受随机噪声影响的输运-扩散方程规律的非唯一性

IF 2.4 2区 数学 Q1 MATHEMATICS
Ujjwal Koley , Kazuo Yamazaki
{"title":"受随机噪声影响的输运-扩散方程规律的非唯一性","authors":"Ujjwal Koley ,&nbsp;Kazuo Yamazaki","doi":"10.1016/j.jde.2024.09.046","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a transport-diffusion equation forced by random noise of three types: additive, linear multiplicative in Itô's interpretation, and transport in Stratonovich's interpretation. Via convex integration modified to probabilistic setting, we prove existence of a divergence-free vector field with spatial regularity in Sobolev space and corresponding solution to a transport-diffusion equation with spatial regularity in Lebesgue space, and consequently non-uniqueness in law at the level of probabilistically strong solutions globally in time.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 82-142"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-uniqueness in law of transport-diffusion equation forced by random noise\",\"authors\":\"Ujjwal Koley ,&nbsp;Kazuo Yamazaki\",\"doi\":\"10.1016/j.jde.2024.09.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a transport-diffusion equation forced by random noise of three types: additive, linear multiplicative in Itô's interpretation, and transport in Stratonovich's interpretation. Via convex integration modified to probabilistic setting, we prove existence of a divergence-free vector field with spatial regularity in Sobolev space and corresponding solution to a transport-diffusion equation with spatial regularity in Lebesgue space, and consequently non-uniqueness in law at the level of probabilistically strong solutions globally in time.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 82-142\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006314\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006314","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了由三种随机噪声强迫的输运-扩散方程:加法噪声、伊藤解释的线性乘法噪声和斯特拉顿诺维奇解释的输运噪声。通过修改为概率设置的凸积分,我们证明了在 Sobolev 空间中具有空间正则性的无发散向量场的存在性,以及在 Lebesgue 空间中具有空间正则性的输运扩散方程的相应解,并因此证明了在时间上全局概率强解的非唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-uniqueness in law of transport-diffusion equation forced by random noise
We consider a transport-diffusion equation forced by random noise of three types: additive, linear multiplicative in Itô's interpretation, and transport in Stratonovich's interpretation. Via convex integration modified to probabilistic setting, we prove existence of a divergence-free vector field with spatial regularity in Sobolev space and corresponding solution to a transport-diffusion equation with spatial regularity in Lebesgue space, and consequently non-uniqueness in law at the level of probabilistically strong solutions globally in time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信