Ru-anchoring Co-MOF 衍生的多孔 Ru-Co3O4 纳米材料可增强氧进化活性和结构稳定性

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nan Li, Lujiao Mao, Yuting Fu, Haoran Wang, Yuchang Shen, Xuemei Zhou, Qipeng Li and Jinjie Qian
{"title":"Ru-anchoring Co-MOF 衍生的多孔 Ru-Co3O4 纳米材料可增强氧进化活性和结构稳定性","authors":"Nan Li, Lujiao Mao, Yuting Fu, Haoran Wang, Yuchang Shen, Xuemei Zhou, Qipeng Li and Jinjie Qian","doi":"10.1039/D4QI02061H","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalytic water electrolysis is intrinsically limited by the slow kinetics of the oxygen evolution reaction (OER) at the anodic electrode. Building on our previous work, we utilized a porous metal–organic framework (<strong>CoOF-1</strong>) structurally characterized by rich adsorption sites for Ru(<small>III</small>) ions. In this study, the incorporation of noble metal species into the <strong>CoOF-1</strong>-derived porous Co<small><sub>3</sub></small>O<small><sub>4</sub></small> matrix effectively improves electrocatalytic OER performance. The optimized <strong>Ru-Co<small><sub>3</sub></small>O<small><sub>4</sub></small>-5</strong> exhibits an overpotential of 260 mV at 10 mA cm<small><sup>−2</sup></small>, a Tafel slope of 84 mV dec<small><sup>−1</sup></small>, and a satisfactory current retention of 95.8% over 20 hours. This enhanced OER activity results from the introduction of Ru to modulate the surface electron distribution as well as the large specific surface area. Furthermore, both the <em>in situ</em> Raman test and XPS analysis confirm the robust structural stability of <strong>Ru-Co<small><sub>3</sub></small>O<small><sub>4</sub></small></strong>. This study provides a new approach for MOF-derived porous ruthenium-doped Co<small><sub>3</sub></small>O<small><sub>4</sub></small> nanomaterials with high activity and durability, showcasing great potential in the field of practical energy storage and conversion.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ru-anchoring Co-MOF-derived porous Ru-Co3O4 nanomaterials for enhanced oxygen evolution activity and structural stability†\",\"authors\":\"Nan Li, Lujiao Mao, Yuting Fu, Haoran Wang, Yuchang Shen, Xuemei Zhou, Qipeng Li and Jinjie Qian\",\"doi\":\"10.1039/D4QI02061H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrocatalytic water electrolysis is intrinsically limited by the slow kinetics of the oxygen evolution reaction (OER) at the anodic electrode. Building on our previous work, we utilized a porous metal–organic framework (<strong>CoOF-1</strong>) structurally characterized by rich adsorption sites for Ru(<small>III</small>) ions. In this study, the incorporation of noble metal species into the <strong>CoOF-1</strong>-derived porous Co<small><sub>3</sub></small>O<small><sub>4</sub></small> matrix effectively improves electrocatalytic OER performance. The optimized <strong>Ru-Co<small><sub>3</sub></small>O<small><sub>4</sub></small>-5</strong> exhibits an overpotential of 260 mV at 10 mA cm<small><sup>−2</sup></small>, a Tafel slope of 84 mV dec<small><sup>−1</sup></small>, and a satisfactory current retention of 95.8% over 20 hours. This enhanced OER activity results from the introduction of Ru to modulate the surface electron distribution as well as the large specific surface area. Furthermore, both the <em>in situ</em> Raman test and XPS analysis confirm the robust structural stability of <strong>Ru-Co<small><sub>3</sub></small>O<small><sub>4</sub></small></strong>. This study provides a new approach for MOF-derived porous ruthenium-doped Co<small><sub>3</sub></small>O<small><sub>4</sub></small> nanomaterials with high activity and durability, showcasing great potential in the field of practical energy storage and conversion.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02061h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02061h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化水电解本质上受到阳极电极氧进化反应(OER)缓慢动力学的限制。在先前工作的基础上,我们利用了一种多孔金属有机框架(CoOF-1),其结构特征是具有丰富的 Ru(III)离子吸附位点。在本研究中,在 CoOF-1 衍生的多孔 Co3O4 基质中加入贵金属物种可有效提高电催化 OER 性能。优化后的 Ru-Co3O 4-5 在 10 mA cm-2 时的过电位为 260 mV,塔菲尔斜率为 84 mV dec-1,20 小时内的电流保持率为 95.8%,令人满意。这种增强的 OER 活性是由于引入了 Ru 来调节表面电子分布以及较大的比表面积。此外,原位拉曼测试和 XPS 分析都证实了 Ru-Co3O 4 结构的稳定性。这项研究为具有高活性和耐久性的多孔钌掺杂 Co3O4 纳米材料提供了一种新的 MOF 衍生方法,在实用能源存储和转换领域展示了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ru-anchoring Co-MOF-derived porous Ru-Co3O4 nanomaterials for enhanced oxygen evolution activity and structural stability†

Ru-anchoring Co-MOF-derived porous Ru-Co3O4 nanomaterials for enhanced oxygen evolution activity and structural stability†

Electrocatalytic water electrolysis is intrinsically limited by the slow kinetics of the oxygen evolution reaction (OER) at the anodic electrode. Building on our previous work, we utilized a porous metal–organic framework (CoOF-1) structurally characterized by rich adsorption sites for Ru(III) ions. In this study, the incorporation of noble metal species into the CoOF-1-derived porous Co3O4 matrix effectively improves electrocatalytic OER performance. The optimized Ru-Co3O4-5 exhibits an overpotential of 260 mV at 10 mA cm−2, a Tafel slope of 84 mV dec−1, and a satisfactory current retention of 95.8% over 20 hours. This enhanced OER activity results from the introduction of Ru to modulate the surface electron distribution as well as the large specific surface area. Furthermore, both the in situ Raman test and XPS analysis confirm the robust structural stability of Ru-Co3O4. This study provides a new approach for MOF-derived porous ruthenium-doped Co3O4 nanomaterials with high activity and durability, showcasing great potential in the field of practical energy storage and conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信