Wenmin Xiong , Na Song , Xiaowei Mo , Zeyu Zhang , Jinyan Song , Yushi Wang , Junyu Li , Zhilin Yu
{"title":"用于疾病治疗的生物材料原位配制:多肽组装策略的最新进展","authors":"Wenmin Xiong , Na Song , Xiaowei Mo , Zeyu Zhang , Jinyan Song , Yushi Wang , Junyu Li , Zhilin Yu","doi":"10.1016/j.ccr.2024.216251","DOIUrl":null,"url":null,"abstract":"<div><div>Biomaterials aim to address healthy issues and contribute to improve life quality for human beings. Currently available biomaterials have been challenged in performing theranostic objectives under real dynamic physiological conditions and at precise targeting sites. To address this concern, over the past few years in situ formulation of biomaterials has been developed to perform disease diagnosis and therapy in a precise manner involving different components. In this review, we introduced the concept of in situ-formed biomaterials and their design principles, specifically summarizing the progress of in situ-formed biomaterials based on stimulus-responsive self-assembly of peptides in living systems. We highlighted the recent examples of in situ assembling systems of peptides with applications ranging from cancer therapy, anti-inflammation and anti-bacteria, as well as tissue engineering and regeneration. The challenges met by in situ biomaterials and the prospects of in situ peptide assembly towards biomedicines are also discussed, which hopefully elucidates the great potential of in situ-formed biomaterials for future healthcare.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"523 ","pages":"Article 216251"},"PeriodicalIF":20.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ formulation of biomaterials for disease therapy: Recent advances in peptide assembly strategies\",\"authors\":\"Wenmin Xiong , Na Song , Xiaowei Mo , Zeyu Zhang , Jinyan Song , Yushi Wang , Junyu Li , Zhilin Yu\",\"doi\":\"10.1016/j.ccr.2024.216251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomaterials aim to address healthy issues and contribute to improve life quality for human beings. Currently available biomaterials have been challenged in performing theranostic objectives under real dynamic physiological conditions and at precise targeting sites. To address this concern, over the past few years in situ formulation of biomaterials has been developed to perform disease diagnosis and therapy in a precise manner involving different components. In this review, we introduced the concept of in situ-formed biomaterials and their design principles, specifically summarizing the progress of in situ-formed biomaterials based on stimulus-responsive self-assembly of peptides in living systems. We highlighted the recent examples of in situ assembling systems of peptides with applications ranging from cancer therapy, anti-inflammation and anti-bacteria, as well as tissue engineering and regeneration. The challenges met by in situ biomaterials and the prospects of in situ peptide assembly towards biomedicines are also discussed, which hopefully elucidates the great potential of in situ-formed biomaterials for future healthcare.</div></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":\"523 \",\"pages\":\"Article 216251\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854524005976\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524005976","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
In situ formulation of biomaterials for disease therapy: Recent advances in peptide assembly strategies
Biomaterials aim to address healthy issues and contribute to improve life quality for human beings. Currently available biomaterials have been challenged in performing theranostic objectives under real dynamic physiological conditions and at precise targeting sites. To address this concern, over the past few years in situ formulation of biomaterials has been developed to perform disease diagnosis and therapy in a precise manner involving different components. In this review, we introduced the concept of in situ-formed biomaterials and their design principles, specifically summarizing the progress of in situ-formed biomaterials based on stimulus-responsive self-assembly of peptides in living systems. We highlighted the recent examples of in situ assembling systems of peptides with applications ranging from cancer therapy, anti-inflammation and anti-bacteria, as well as tissue engineering and regeneration. The challenges met by in situ biomaterials and the prospects of in situ peptide assembly towards biomedicines are also discussed, which hopefully elucidates the great potential of in situ-formed biomaterials for future healthcare.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.