整合预升华和界面保护,实现高能量全固态电池

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiangqun Xu, Shiyong Chu, Sheng Xu, Haoyu Li, Chuanchao Sheng, Mingxia Dong, Shaohua Guo, Haoshen Zhou
{"title":"整合预升华和界面保护,实现高能量全固态电池","authors":"Xiangqun Xu, Shiyong Chu, Sheng Xu, Haoyu Li, Chuanchao Sheng, Mingxia Dong, Shaohua Guo, Haoshen Zhou","doi":"10.1002/anie.202415891","DOIUrl":null,"url":null,"abstract":"All-solid-state batteries (ASSBs), particularly those with Li-free anodes or even anode-free configurations, have attracted extensive attention due to high safety and energy density. However, chemical-mechanical degradation typically deteriorates the cycle life and energy of Li-free anode ASSBs with the absence of Li inventory. Here, the prelithiation agent Li5FeO4 (LFO) coated Ni-rich layered oxide is developed as the cathode for Li-free anode ASSBs. The coated LFO acts as an interfacial protective layer to prevent the highly oxidizing Ni-rich cathode from reacting with sulfide solid-state electrolytes (SSEs), mitigating the structural degradation of Ni-rich cathodes and the decomposition of SSE, resulting in excellent cycle life. Beneficial from the coated LFO in the cathode of the Li-free anode ASSBs, the reversible capacity improves from 174.7 mAh g−1 to 199.7 mAh g−1, and the capacity retention is enhanced from 33.8% to 84.8% after 100 cycles. Additionally, an ultrahigh energy density of 440 Wh kg−1, based on the mass of the composite cathode, Li-free anode, and SSE, is obtained in a Li-free anode all-solid-state pouch cell equipped with the LFO-coated cathode.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"56 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Prelithiation and Interface Protection to Achieve High-Energy All-Solid-State Batteries\",\"authors\":\"Xiangqun Xu, Shiyong Chu, Sheng Xu, Haoyu Li, Chuanchao Sheng, Mingxia Dong, Shaohua Guo, Haoshen Zhou\",\"doi\":\"10.1002/anie.202415891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-solid-state batteries (ASSBs), particularly those with Li-free anodes or even anode-free configurations, have attracted extensive attention due to high safety and energy density. However, chemical-mechanical degradation typically deteriorates the cycle life and energy of Li-free anode ASSBs with the absence of Li inventory. Here, the prelithiation agent Li5FeO4 (LFO) coated Ni-rich layered oxide is developed as the cathode for Li-free anode ASSBs. The coated LFO acts as an interfacial protective layer to prevent the highly oxidizing Ni-rich cathode from reacting with sulfide solid-state electrolytes (SSEs), mitigating the structural degradation of Ni-rich cathodes and the decomposition of SSE, resulting in excellent cycle life. Beneficial from the coated LFO in the cathode of the Li-free anode ASSBs, the reversible capacity improves from 174.7 mAh g−1 to 199.7 mAh g−1, and the capacity retention is enhanced from 33.8% to 84.8% after 100 cycles. Additionally, an ultrahigh energy density of 440 Wh kg−1, based on the mass of the composite cathode, Li-free anode, and SSE, is obtained in a Li-free anode all-solid-state pouch cell equipped with the LFO-coated cathode.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202415891\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202415891","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全固态电池(ASSB),尤其是那些采用无锂电阳极或甚至无阳极配置的电池,因其高安全性和高能量密度而受到广泛关注。然而,在没有锂库存的情况下,化学机械降解通常会降低无锂阳极全固态电池的循环寿命和能量。在此,我们开发了预锂化剂 Li5FeO4(LFO)涂层富镍层状氧化物,作为无锂离子阳极 ASSB 的阴极。涂覆的 LFO 可作为界面保护层,防止高度氧化的富镍阴极与硫化物固态电解质(SSE)发生反应,减轻富镍阴极的结构退化和 SSE 的分解,从而实现出色的循环寿命。在无锂离子阳极 ASSB 的阴极涂覆 LFO 后,可逆容量从 174.7 mAh g-1 提高到 199.7 mAh g-1,100 次循环后的容量保持率从 33.8% 提高到 84.8%。此外,在配备了 LFO 涂层阴极的无锂离子阳极全固态袋式电池中,根据复合阴极、无锂离子阳极和 SSE 的质量,可获得 440 Wh kg-1 的超高能量密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Prelithiation and Interface Protection to Achieve High-Energy All-Solid-State Batteries
All-solid-state batteries (ASSBs), particularly those with Li-free anodes or even anode-free configurations, have attracted extensive attention due to high safety and energy density. However, chemical-mechanical degradation typically deteriorates the cycle life and energy of Li-free anode ASSBs with the absence of Li inventory. Here, the prelithiation agent Li5FeO4 (LFO) coated Ni-rich layered oxide is developed as the cathode for Li-free anode ASSBs. The coated LFO acts as an interfacial protective layer to prevent the highly oxidizing Ni-rich cathode from reacting with sulfide solid-state electrolytes (SSEs), mitigating the structural degradation of Ni-rich cathodes and the decomposition of SSE, resulting in excellent cycle life. Beneficial from the coated LFO in the cathode of the Li-free anode ASSBs, the reversible capacity improves from 174.7 mAh g−1 to 199.7 mAh g−1, and the capacity retention is enhanced from 33.8% to 84.8% after 100 cycles. Additionally, an ultrahigh energy density of 440 Wh kg−1, based on the mass of the composite cathode, Li-free anode, and SSE, is obtained in a Li-free anode all-solid-state pouch cell equipped with the LFO-coated cathode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信