非克里福德门中相干误差的伪旋转缓解

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Jader P. Santos, Ben Bar, Raam Uzdin
{"title":"非克里福德门中相干误差的伪旋转缓解","authors":"Jader P. Santos, Ben Bar, Raam Uzdin","doi":"10.1038/s41534-024-00889-8","DOIUrl":null,"url":null,"abstract":"<p>The conventional circuit paradigm, utilizing a small set of gates to construct arbitrary quantum circuits, is hindered by significant noise. In the quantum Fourier transform, for instance, the standard gate paradigm employs two CNOT gates for the partial CPhase. In contrast, some quantum computers can directly implement such operations using their native interaction, resulting in less noisy gates. Unfortunately, coherent errors degrade the performance of these gates. In Clifford gates such as the CNOT, these errors can be addressed through randomized compiling (RC). However, RC does not apply to the non-Clifford multi-qubit native implementations described above. The present work introduces and experimentally demonstrates a technique called ‘Pseudo Twirling’ (PST) to address coherent errors. We demonstrate experimentally that integrating PST with the ‘Adaptive KIK’ quantum error mitigation method enables the simultaneous mitigation of noise and coherent errors in multi-qubit non-Clifford gates.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"60 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo twirling mitigation of coherent errors in non-Clifford gates\",\"authors\":\"Jader P. Santos, Ben Bar, Raam Uzdin\",\"doi\":\"10.1038/s41534-024-00889-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The conventional circuit paradigm, utilizing a small set of gates to construct arbitrary quantum circuits, is hindered by significant noise. In the quantum Fourier transform, for instance, the standard gate paradigm employs two CNOT gates for the partial CPhase. In contrast, some quantum computers can directly implement such operations using their native interaction, resulting in less noisy gates. Unfortunately, coherent errors degrade the performance of these gates. In Clifford gates such as the CNOT, these errors can be addressed through randomized compiling (RC). However, RC does not apply to the non-Clifford multi-qubit native implementations described above. The present work introduces and experimentally demonstrates a technique called ‘Pseudo Twirling’ (PST) to address coherent errors. We demonstrate experimentally that integrating PST with the ‘Adaptive KIK’ quantum error mitigation method enables the simultaneous mitigation of noise and coherent errors in multi-qubit non-Clifford gates.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00889-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00889-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

传统的电路范式利用一组小门来构建任意量子电路,但受到严重噪声的阻碍。例如,在量子傅立叶变换中,标准门范式为部分 CPhase 使用了两个 CNOT 门。相比之下,一些量子计算机可以直接使用它们的本机交互来实现此类操作,从而减少了门电路的噪声。不幸的是,相干误差会降低这些门的性能。在克利福德门(如 CNOT)中,这些误差可以通过随机编译(RC)来解决。然而,RC 并不适用于上述非克利福德多量子比特本机实现。本研究介绍并实验演示了一种名为 "伪旋转"(Pseudo Twirling,PST)的技术来解决相干错误。我们通过实验证明,将 PST 与 "自适应 KIK "量子误差缓解方法相结合,可以同时缓解多量子比特非克里福门中的噪声和相干误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pseudo twirling mitigation of coherent errors in non-Clifford gates

Pseudo twirling mitigation of coherent errors in non-Clifford gates

The conventional circuit paradigm, utilizing a small set of gates to construct arbitrary quantum circuits, is hindered by significant noise. In the quantum Fourier transform, for instance, the standard gate paradigm employs two CNOT gates for the partial CPhase. In contrast, some quantum computers can directly implement such operations using their native interaction, resulting in less noisy gates. Unfortunately, coherent errors degrade the performance of these gates. In Clifford gates such as the CNOT, these errors can be addressed through randomized compiling (RC). However, RC does not apply to the non-Clifford multi-qubit native implementations described above. The present work introduces and experimentally demonstrates a technique called ‘Pseudo Twirling’ (PST) to address coherent errors. We demonstrate experimentally that integrating PST with the ‘Adaptive KIK’ quantum error mitigation method enables the simultaneous mitigation of noise and coherent errors in multi-qubit non-Clifford gates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信