相对论重离子碰撞福克-普朗克算子的谱特征函数分解

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR
A. Rizzi, G. Wolschin
{"title":"相对论重离子碰撞福克-普朗克算子的谱特征函数分解","authors":"A. Rizzi,&nbsp;G. Wolschin","doi":"10.1140/epja/s10050-024-01410-7","DOIUrl":null,"url":null,"abstract":"<div><p>A spectral solution method is proposed to solve a previously developed non-equilibrium statistical model describing partial thermalization of produced charged hadrons in relativistic heavy-ion collisions, thus improving the accuracy of the numerical solution. The particle’s phase-space trajectories are treated as a drift-diffusion stochastic process, leading to a Fokker–Planck equation (FPE) for the single-particle probability distribution function. The drift and diffusion coefficients are derived from the expected asymptotic states via appropriate fluctuation–dissipation relations, and the resulting FPE is then solved numerically using a spectral eigenfunction decomposition. The calculated time-dependent particle distributions are compared to Pb–Pb data from the ATLAS and ALICE collaborations at the Large Hadron Collider.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"60 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-024-01410-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Spectral eigenfunction decomposition of a Fokker–Planck operator for relativistic heavy-ion collisions\",\"authors\":\"A. Rizzi,&nbsp;G. Wolschin\",\"doi\":\"10.1140/epja/s10050-024-01410-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A spectral solution method is proposed to solve a previously developed non-equilibrium statistical model describing partial thermalization of produced charged hadrons in relativistic heavy-ion collisions, thus improving the accuracy of the numerical solution. The particle’s phase-space trajectories are treated as a drift-diffusion stochastic process, leading to a Fokker–Planck equation (FPE) for the single-particle probability distribution function. The drift and diffusion coefficients are derived from the expected asymptotic states via appropriate fluctuation–dissipation relations, and the resulting FPE is then solved numerically using a spectral eigenfunction decomposition. The calculated time-dependent particle distributions are compared to Pb–Pb data from the ATLAS and ALICE collaborations at the Large Hadron Collider.</p></div>\",\"PeriodicalId\":786,\"journal\":{\"name\":\"The European Physical Journal A\",\"volume\":\"60 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epja/s10050-024-01410-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epja/s10050-024-01410-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-024-01410-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种光谱求解方法来求解之前开发的描述相对论重离子碰撞中产生的带电强子部分热化的非平衡统计模型,从而提高了数值求解的精度。粒子的相空间轨迹被视为漂移-扩散随机过程,导致单粒子概率分布函数的福克-普朗克方程(FPE)。漂移和扩散系数是通过适当的波动-扩散关系从预期渐近状态推导出来的,然后利用谱特征函数分解对得到的 FPE 进行数值求解。计算出的随时间变化的粒子分布与大型强子对撞机上的 ATLAS 和 ALICE 合作的 Pb-Pb 数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral eigenfunction decomposition of a Fokker–Planck operator for relativistic heavy-ion collisions

A spectral solution method is proposed to solve a previously developed non-equilibrium statistical model describing partial thermalization of produced charged hadrons in relativistic heavy-ion collisions, thus improving the accuracy of the numerical solution. The particle’s phase-space trajectories are treated as a drift-diffusion stochastic process, leading to a Fokker–Planck equation (FPE) for the single-particle probability distribution function. The drift and diffusion coefficients are derived from the expected asymptotic states via appropriate fluctuation–dissipation relations, and the resulting FPE is then solved numerically using a spectral eigenfunction decomposition. The calculated time-dependent particle distributions are compared to Pb–Pb data from the ATLAS and ALICE collaborations at the Large Hadron Collider.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal A
The European Physical Journal A 物理-物理:核物理
CiteScore
5.00
自引率
18.50%
发文量
216
审稿时长
3-8 weeks
期刊介绍: Hadron Physics Hadron Structure Hadron Spectroscopy Hadronic and Electroweak Interactions of Hadrons Nonperturbative Approaches to QCD Phenomenological Approaches to Hadron Physics Nuclear and Quark Matter Heavy-Ion Collisions Phase Diagram of the Strong Interaction Hard Probes Quark-Gluon Plasma and Hadronic Matter Relativistic Transport and Hydrodynamics Compact Stars Nuclear Physics Nuclear Structure and Reactions Few-Body Systems Radioactive Beams Electroweak Interactions Nuclear Astrophysics Article Categories Letters (Open Access) Regular Articles New Tools and Techniques Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信