Ising-XXZ 金刚石结构临界点附近的量子多参数估计

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Bing Yan, Ping Chen
{"title":"Ising-XXZ 金刚石结构临界点附近的量子多参数估计","authors":"Bing Yan,&nbsp;Ping Chen","doi":"10.1007/s10773-024-05778-6","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum Fisher information (QFI) is frequently utilized to investigate quantum criticality in various spin-chain models. However, little attention has been given to the quantum Fisher information matrix (QFIM) in this context. This study examines criticality and the strategy for the simultaneous estimation of multiple parameters using the QFIM in an Ising-XXZ diamond structure at finite temperatures. Our findings demonstrate that by analyzing the finite-temperature scaling behavior, the variances derived from the QFIM can accurately estimate the critical point in this model. Additionally, we observe that the behavior of variances is contingent upon both the system structure and the parameters used. Moreover, whether the multi-parameter simultaneous estimation strategy is advantageous over individual parameter estimation depends on the system structure, temperature, and the parameters applied.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"63 10","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Multi-Parameter Estimation Near Criticality in Ising-XXZ Diamond Structure\",\"authors\":\"Bing Yan,&nbsp;Ping Chen\",\"doi\":\"10.1007/s10773-024-05778-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum Fisher information (QFI) is frequently utilized to investigate quantum criticality in various spin-chain models. However, little attention has been given to the quantum Fisher information matrix (QFIM) in this context. This study examines criticality and the strategy for the simultaneous estimation of multiple parameters using the QFIM in an Ising-XXZ diamond structure at finite temperatures. Our findings demonstrate that by analyzing the finite-temperature scaling behavior, the variances derived from the QFIM can accurately estimate the critical point in this model. Additionally, we observe that the behavior of variances is contingent upon both the system structure and the parameters used. Moreover, whether the multi-parameter simultaneous estimation strategy is advantageous over individual parameter estimation depends on the system structure, temperature, and the parameters applied.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"63 10\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-024-05778-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05778-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子费雪信息(QFI)经常被用来研究各种自旋链模型中的量子临界性。然而,人们很少关注量子费雪信息矩阵(QFIM)。本研究考察了有限温度下 Ising-XXZ 金刚石结构中的临界性以及利用 QFIM 同时估算多个参数的策略。我们的研究结果表明,通过分析有限温度缩放行为,QFIM 得出的方差可以准确估计该模型的临界点。此外,我们还观察到方差的行为取决于系统结构和所使用的参数。此外,多参数同步估算策略是否比单个参数估算更具优势取决于系统结构、温度和所使用的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Multi-Parameter Estimation Near Criticality in Ising-XXZ Diamond Structure

Quantum Fisher information (QFI) is frequently utilized to investigate quantum criticality in various spin-chain models. However, little attention has been given to the quantum Fisher information matrix (QFIM) in this context. This study examines criticality and the strategy for the simultaneous estimation of multiple parameters using the QFIM in an Ising-XXZ diamond structure at finite temperatures. Our findings demonstrate that by analyzing the finite-temperature scaling behavior, the variances derived from the QFIM can accurately estimate the critical point in this model. Additionally, we observe that the behavior of variances is contingent upon both the system structure and the parameters used. Moreover, whether the multi-parameter simultaneous estimation strategy is advantageous over individual parameter estimation depends on the system structure, temperature, and the parameters applied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信