论从具有可容许权重的伯格曼空间到齐格蒙类型空间的加权微分组成算子之和

IF 0.8 Q2 MATHEMATICS
Ajay K. Sharma, Sanjay Kumar, Mehak Sharma, Bhanu Sharma, Mohammad Mursaleen
{"title":"论从具有可容许权重的伯格曼空间到齐格蒙类型空间的加权微分组成算子之和","authors":"Ajay K. Sharma,&nbsp;Sanjay Kumar,&nbsp;Mehak Sharma,&nbsp;Bhanu Sharma,&nbsp;Mohammad Mursaleen","doi":"10.1007/s43036-024-00345-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\mathbb D}\\)</span> be the open unit disk in the complex plane. We characterize the boundedness and compactness of the sum of weighted differentiation composition operators </p><div><div><span>$$\\begin{aligned} (T_{\\overrightarrow{\\psi }, \\varphi } f)(z)=\\sum _{j=0}^{n}(D^j_{\\psi _j, \\varphi }f)(z)=\\sum _{j=0}^n\\psi _{j}(z) f^{(j)} (\\varphi (z)),\\quad z\\in {\\mathbb D}, \\end{aligned}$$</span></div></div><p>where <span>\\(n\\in {\\mathbb N}_0\\)</span>, <span>\\(\\psi _j\\)</span>, <span>\\(j\\in \\overline{0,n}\\)</span>, are holomorphic functions on <span>\\({\\mathbb D}\\)</span>, and <span>\\(\\varphi \\)</span>, a holomorphic self-maps of <span>\\({\\mathbb D}\\)</span>, acting from Bergman spaces with admissible weights to Zygmund type spaces.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sum of weighted differentiation composition operators from Bergman spaces with admissible weights to Zygmund type spaces\",\"authors\":\"Ajay K. Sharma,&nbsp;Sanjay Kumar,&nbsp;Mehak Sharma,&nbsp;Bhanu Sharma,&nbsp;Mohammad Mursaleen\",\"doi\":\"10.1007/s43036-024-00345-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\({\\\\mathbb D}\\\\)</span> be the open unit disk in the complex plane. We characterize the boundedness and compactness of the sum of weighted differentiation composition operators </p><div><div><span>$$\\\\begin{aligned} (T_{\\\\overrightarrow{\\\\psi }, \\\\varphi } f)(z)=\\\\sum _{j=0}^{n}(D^j_{\\\\psi _j, \\\\varphi }f)(z)=\\\\sum _{j=0}^n\\\\psi _{j}(z) f^{(j)} (\\\\varphi (z)),\\\\quad z\\\\in {\\\\mathbb D}, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(n\\\\in {\\\\mathbb N}_0\\\\)</span>, <span>\\\\(\\\\psi _j\\\\)</span>, <span>\\\\(j\\\\in \\\\overline{0,n}\\\\)</span>, are holomorphic functions on <span>\\\\({\\\\mathbb D}\\\\)</span>, and <span>\\\\(\\\\varphi \\\\)</span>, a holomorphic self-maps of <span>\\\\({\\\\mathbb D}\\\\)</span>, acting from Bergman spaces with admissible weights to Zygmund type spaces.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 3\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00345-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00345-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \({\mathbb D}\) 是复平面上的开放单位盘。我们描述加权微分组成算子 $$\begin{aligned} (T_{\overrightarrow{\psi }、\varphi } f)(z)=sum _{j=0}^{n}(D^j_{\psi _j, \varphi }f)(z)=sum _{j=0}^n\psi _{j}(z) f^{(j)} (\varphi (z)),\quad z\in {\mathbb D}、\end{aligned}$where \(n\in {\mathbb N}_0\), \(\psi _j\), \(jin \overline{0,n}\), are holomorphic functions on \({\mathbb D}\)、和 \(\varphi _),是 \({\mathbb D}\) 的全态自映射,从具有可允许权重的伯格曼空间作用到齐格蒙类型空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On sum of weighted differentiation composition operators from Bergman spaces with admissible weights to Zygmund type spaces

Let \({\mathbb D}\) be the open unit disk in the complex plane. We characterize the boundedness and compactness of the sum of weighted differentiation composition operators

$$\begin{aligned} (T_{\overrightarrow{\psi }, \varphi } f)(z)=\sum _{j=0}^{n}(D^j_{\psi _j, \varphi }f)(z)=\sum _{j=0}^n\psi _{j}(z) f^{(j)} (\varphi (z)),\quad z\in {\mathbb D}, \end{aligned}$$

where \(n\in {\mathbb N}_0\), \(\psi _j\), \(j\in \overline{0,n}\), are holomorphic functions on \({\mathbb D}\), and \(\varphi \), a holomorphic self-maps of \({\mathbb D}\), acting from Bergman spaces with admissible weights to Zygmund type spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信