Ajay K. Sharma, Sanjay Kumar, Mehak Sharma, Bhanu Sharma, Mohammad Mursaleen
{"title":"论从具有可容许权重的伯格曼空间到齐格蒙类型空间的加权微分组成算子之和","authors":"Ajay K. Sharma, Sanjay Kumar, Mehak Sharma, Bhanu Sharma, Mohammad Mursaleen","doi":"10.1007/s43036-024-00345-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\mathbb D}\\)</span> be the open unit disk in the complex plane. We characterize the boundedness and compactness of the sum of weighted differentiation composition operators </p><div><div><span>$$\\begin{aligned} (T_{\\overrightarrow{\\psi }, \\varphi } f)(z)=\\sum _{j=0}^{n}(D^j_{\\psi _j, \\varphi }f)(z)=\\sum _{j=0}^n\\psi _{j}(z) f^{(j)} (\\varphi (z)),\\quad z\\in {\\mathbb D}, \\end{aligned}$$</span></div></div><p>where <span>\\(n\\in {\\mathbb N}_0\\)</span>, <span>\\(\\psi _j\\)</span>, <span>\\(j\\in \\overline{0,n}\\)</span>, are holomorphic functions on <span>\\({\\mathbb D}\\)</span>, and <span>\\(\\varphi \\)</span>, a holomorphic self-maps of <span>\\({\\mathbb D}\\)</span>, acting from Bergman spaces with admissible weights to Zygmund type spaces.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sum of weighted differentiation composition operators from Bergman spaces with admissible weights to Zygmund type spaces\",\"authors\":\"Ajay K. Sharma, Sanjay Kumar, Mehak Sharma, Bhanu Sharma, Mohammad Mursaleen\",\"doi\":\"10.1007/s43036-024-00345-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\({\\\\mathbb D}\\\\)</span> be the open unit disk in the complex plane. We characterize the boundedness and compactness of the sum of weighted differentiation composition operators </p><div><div><span>$$\\\\begin{aligned} (T_{\\\\overrightarrow{\\\\psi }, \\\\varphi } f)(z)=\\\\sum _{j=0}^{n}(D^j_{\\\\psi _j, \\\\varphi }f)(z)=\\\\sum _{j=0}^n\\\\psi _{j}(z) f^{(j)} (\\\\varphi (z)),\\\\quad z\\\\in {\\\\mathbb D}, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(n\\\\in {\\\\mathbb N}_0\\\\)</span>, <span>\\\\(\\\\psi _j\\\\)</span>, <span>\\\\(j\\\\in \\\\overline{0,n}\\\\)</span>, are holomorphic functions on <span>\\\\({\\\\mathbb D}\\\\)</span>, and <span>\\\\(\\\\varphi \\\\)</span>, a holomorphic self-maps of <span>\\\\({\\\\mathbb D}\\\\)</span>, acting from Bergman spaces with admissible weights to Zygmund type spaces.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 3\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00345-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00345-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On sum of weighted differentiation composition operators from Bergman spaces with admissible weights to Zygmund type spaces
Let \({\mathbb D}\) be the open unit disk in the complex plane. We characterize the boundedness and compactness of the sum of weighted differentiation composition operators
where \(n\in {\mathbb N}_0\), \(\psi _j\), \(j\in \overline{0,n}\), are holomorphic functions on \({\mathbb D}\), and \(\varphi \), a holomorphic self-maps of \({\mathbb D}\), acting from Bergman spaces with admissible weights to Zygmund type spaces.