规定洛伦兹平均曲率超曲面的存在性和正则性,以及玻恩-英菲尔德模型

IF 2.4 1区 数学 Q1 MATHEMATICS
Jaeyoung Byeon, Norihisa Ikoma, Andrea Malchiodi, Luciano Mari
{"title":"规定洛伦兹平均曲率超曲面的存在性和正则性,以及玻恩-英菲尔德模型","authors":"Jaeyoung Byeon,&nbsp;Norihisa Ikoma,&nbsp;Andrea Malchiodi,&nbsp;Luciano Mari","doi":"10.1007/s40818-023-00167-4","DOIUrl":null,"url":null,"abstract":"<div><p>Given a measure <span>\\(\\rho \\)</span> on a domain <span>\\(\\Omega \\subset {\\mathbb {R}}^m\\)</span>, we study spacelike graphs over <span>\\(\\Omega \\)</span> in Minkowski space with Lorentzian mean curvature <span>\\(\\rho \\)</span> and Dirichlet boundary condition on <span>\\(\\partial \\Omega \\)</span>, which solve </p><div><figure><div><div><picture><img></picture></div></div></figure></div><p> The graph function also represents the electric potential generated by a charge <span>\\(\\rho \\)</span> in electrostatic Born-Infeld’s theory. Even though there exists a unique minimizer <span>\\(u_\\rho \\)</span> of the associated action </p><div><div><span>$$\\begin{aligned} I_\\rho (\\psi ) \\doteq \\int _{\\Omega } \\Big ( 1 - \\sqrt{1-|D\\psi |^2} \\Big ) \\textrm{d}x - \\langle \\rho , \\psi \\rangle \\end{aligned}$$</span></div></div><p>among functions <span>\\(\\psi \\)</span> satisfying <span>\\(|D\\psi | \\le 1\\)</span>, by the lack of smoothness of the Lagrangian density for <span>\\(|D\\psi | = 1\\)</span> one cannot guarantee that <span>\\(u_\\rho \\)</span> satisfies the Euler-Lagrange equation (<span>\\(\\mathcal{B}\\mathcal{I}\\)</span>). A chief difficulty comes from the possible presence of light segments in the graph of <span>\\(u_\\rho \\)</span>. In this paper, we investigate the existence of a solution for general <span>\\(\\rho \\)</span>. In particular, we give sufficient conditions to guarantee that <span>\\(u_\\rho \\)</span> solves (<span>\\(\\mathcal{B}\\mathcal{I}\\)</span>) and enjoys <span>\\(\\log \\)</span>-improved energy and <span>\\(W^{2,2}_\\textrm{loc}\\)</span> estimate. Furthermore, we construct examples which suggest a sharp threshold for the regularity of <span>\\(\\rho \\)</span> to ensure the solvability of (<span>\\(\\mathcal{B}\\mathcal{I}\\)</span>).</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Regularity for Prescribed Lorentzian Mean Curvature Hypersurfaces, and the Born–Infeld Model\",\"authors\":\"Jaeyoung Byeon,&nbsp;Norihisa Ikoma,&nbsp;Andrea Malchiodi,&nbsp;Luciano Mari\",\"doi\":\"10.1007/s40818-023-00167-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a measure <span>\\\\(\\\\rho \\\\)</span> on a domain <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb {R}}^m\\\\)</span>, we study spacelike graphs over <span>\\\\(\\\\Omega \\\\)</span> in Minkowski space with Lorentzian mean curvature <span>\\\\(\\\\rho \\\\)</span> and Dirichlet boundary condition on <span>\\\\(\\\\partial \\\\Omega \\\\)</span>, which solve </p><div><figure><div><div><picture><img></picture></div></div></figure></div><p> The graph function also represents the electric potential generated by a charge <span>\\\\(\\\\rho \\\\)</span> in electrostatic Born-Infeld’s theory. Even though there exists a unique minimizer <span>\\\\(u_\\\\rho \\\\)</span> of the associated action </p><div><div><span>$$\\\\begin{aligned} I_\\\\rho (\\\\psi ) \\\\doteq \\\\int _{\\\\Omega } \\\\Big ( 1 - \\\\sqrt{1-|D\\\\psi |^2} \\\\Big ) \\\\textrm{d}x - \\\\langle \\\\rho , \\\\psi \\\\rangle \\\\end{aligned}$$</span></div></div><p>among functions <span>\\\\(\\\\psi \\\\)</span> satisfying <span>\\\\(|D\\\\psi | \\\\le 1\\\\)</span>, by the lack of smoothness of the Lagrangian density for <span>\\\\(|D\\\\psi | = 1\\\\)</span> one cannot guarantee that <span>\\\\(u_\\\\rho \\\\)</span> satisfies the Euler-Lagrange equation (<span>\\\\(\\\\mathcal{B}\\\\mathcal{I}\\\\)</span>). A chief difficulty comes from the possible presence of light segments in the graph of <span>\\\\(u_\\\\rho \\\\)</span>. In this paper, we investigate the existence of a solution for general <span>\\\\(\\\\rho \\\\)</span>. In particular, we give sufficient conditions to guarantee that <span>\\\\(u_\\\\rho \\\\)</span> solves (<span>\\\\(\\\\mathcal{B}\\\\mathcal{I}\\\\)</span>) and enjoys <span>\\\\(\\\\log \\\\)</span>-improved energy and <span>\\\\(W^{2,2}_\\\\textrm{loc}\\\\)</span> estimate. Furthermore, we construct examples which suggest a sharp threshold for the regularity of <span>\\\\(\\\\rho \\\\)</span> to ensure the solvability of (<span>\\\\(\\\\mathcal{B}\\\\mathcal{I}\\\\)</span>).</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-023-00167-4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-023-00167-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个域(Omega ubset {\mathbb {R}}^m\)上的量\(\rho \),我们研究在具有洛伦兹平均曲率\(\rho \)和\(\partial \Omega \)上的迪里夏特边界条件的闵科夫斯基空间中\(\Omega \)上的空间类图、图函数也代表了静电博恩-恩菲尔德理论中电荷 \(\rho \) 所产生的电动势。即使存在相关作用 $$\begin{aligned} 的唯一最小值 \(u_\rho \)I_\rho (\psi ) \doteq \int _{\Omega }\Big ( 1 - \sqrt{1-|D\psi |^2} \Big ) \textrm{d}x - \langle \rho , \psi \rangle \end{aligned}$$among functions \(\psi \) satisfying \(|D\psi | \le 1\)、由于 \(|D\psi | = 1\) 的拉格朗日密度缺乏平滑性,我们不能保证 \(u_\rho \) 满足欧拉-拉格朗日方程(\(\mathcal{B}\mathcal{I}\))。主要的困难来自于 \(u_\rho \) 的图中可能存在光段。在本文中,我们研究了一般 \(\rho \)的解的存在性。特别是,我们给出了充分条件来保证(u_\rho \)求解(\(\mathcal{B}\mathcal{I}\))并享有\(\log \)-改进的能量和\(W^{2,2}_textrm{loc}\)估计。此外,我们还构建了一些例子,这些例子提出了一个确保(\(\mathcal{B}\mathcal{I}))可解性的阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Existence and Regularity for Prescribed Lorentzian Mean Curvature Hypersurfaces, and the Born–Infeld Model

Existence and Regularity for Prescribed Lorentzian Mean Curvature Hypersurfaces, and the Born–Infeld Model

Given a measure \(\rho \) on a domain \(\Omega \subset {\mathbb {R}}^m\), we study spacelike graphs over \(\Omega \) in Minkowski space with Lorentzian mean curvature \(\rho \) and Dirichlet boundary condition on \(\partial \Omega \), which solve

The graph function also represents the electric potential generated by a charge \(\rho \) in electrostatic Born-Infeld’s theory. Even though there exists a unique minimizer \(u_\rho \) of the associated action

$$\begin{aligned} I_\rho (\psi ) \doteq \int _{\Omega } \Big ( 1 - \sqrt{1-|D\psi |^2} \Big ) \textrm{d}x - \langle \rho , \psi \rangle \end{aligned}$$

among functions \(\psi \) satisfying \(|D\psi | \le 1\), by the lack of smoothness of the Lagrangian density for \(|D\psi | = 1\) one cannot guarantee that \(u_\rho \) satisfies the Euler-Lagrange equation (\(\mathcal{B}\mathcal{I}\)). A chief difficulty comes from the possible presence of light segments in the graph of \(u_\rho \). In this paper, we investigate the existence of a solution for general \(\rho \). In particular, we give sufficient conditions to guarantee that \(u_\rho \) solves (\(\mathcal{B}\mathcal{I}\)) and enjoys \(\log \)-improved energy and \(W^{2,2}_\textrm{loc}\) estimate. Furthermore, we construct examples which suggest a sharp threshold for the regularity of \(\rho \) to ensure the solvability of (\(\mathcal{B}\mathcal{I}\)).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信