废纸功能材料和结构的可持续三维打印

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Chengcheng Cai, Pei Zhang, Yafei Wang, Yun Tan, Iek Man Lei, Ben Bin Xu, Ji Liu
{"title":"废纸功能材料和结构的可持续三维打印","authors":"Chengcheng Cai,&nbsp;Pei Zhang,&nbsp;Yafei Wang,&nbsp;Yun Tan,&nbsp;Iek Man Lei,&nbsp;Ben Bin Xu,&nbsp;Ji Liu","doi":"10.1007/s42114-024-00970-y","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional (3D) printing is a prominent technology across various industrial sectors, and its increasing popularity urgently calls for sustainable 3D printing materials. However, the availability of such materials remains under exploit. Here, we present a low-cost strategy to harnesses waste papers as a feedstock to develop sustainable 3D printing inks. This approach offers a remarkable printability and circular utilisation of biodegradable paper wastes to produce 3D printed constructs, with desired mechanical properties and shape stability for high temperature applications. Our constructs can be efficiently recycled into inks for reprinting, and our method can be applied to various types of waste papers. By employing multi-material printing, our approach can be extended to produce multi-coloured constructs, security information printings, and mechanically appealing designs. This strategy offers an innovative and sustainable solution that addresses the need for repurposing paper wastes, which would otherwise end up in landfills, while concurrently reducing the reliance on virgin plastics for 3D printing.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 5","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-00970-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Sustainable three-dimensional printing of waste paper-based functional materials and constructs\",\"authors\":\"Chengcheng Cai,&nbsp;Pei Zhang,&nbsp;Yafei Wang,&nbsp;Yun Tan,&nbsp;Iek Man Lei,&nbsp;Ben Bin Xu,&nbsp;Ji Liu\",\"doi\":\"10.1007/s42114-024-00970-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three-dimensional (3D) printing is a prominent technology across various industrial sectors, and its increasing popularity urgently calls for sustainable 3D printing materials. However, the availability of such materials remains under exploit. Here, we present a low-cost strategy to harnesses waste papers as a feedstock to develop sustainable 3D printing inks. This approach offers a remarkable printability and circular utilisation of biodegradable paper wastes to produce 3D printed constructs, with desired mechanical properties and shape stability for high temperature applications. Our constructs can be efficiently recycled into inks for reprinting, and our method can be applied to various types of waste papers. By employing multi-material printing, our approach can be extended to produce multi-coloured constructs, security information printings, and mechanically appealing designs. This strategy offers an innovative and sustainable solution that addresses the need for repurposing paper wastes, which would otherwise end up in landfills, while concurrently reducing the reliance on virgin plastics for 3D printing.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42114-024-00970-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00970-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00970-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

三维(3D)打印是一项横跨各个工业领域的重要技术,它的日益普及迫切需要可持续的 3D 打印材料。然而,此类材料的可用性仍有待开发。在此,我们提出了一种低成本策略,利用废纸作为原料来开发可持续三维打印油墨。这种方法具有出色的可打印性,并可循环利用可生物降解的废纸来生产三维打印结构体,这些结构体具有高温应用所需的机械性能和形状稳定性。我们的结构可以有效地回收到油墨中进行再打印,而且我们的方法可以应用于各种类型的废纸。通过采用多材料印刷,我们的方法可以扩展到生产多色结构、安全信息印刷和具有机械吸引力的设计。这一策略提供了一种创新和可持续的解决方案,满足了对废纸再利用的需求,否则这些废纸将被填埋,同时还能减少三维打印对原始塑料的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable three-dimensional printing of waste paper-based functional materials and constructs

Three-dimensional (3D) printing is a prominent technology across various industrial sectors, and its increasing popularity urgently calls for sustainable 3D printing materials. However, the availability of such materials remains under exploit. Here, we present a low-cost strategy to harnesses waste papers as a feedstock to develop sustainable 3D printing inks. This approach offers a remarkable printability and circular utilisation of biodegradable paper wastes to produce 3D printed constructs, with desired mechanical properties and shape stability for high temperature applications. Our constructs can be efficiently recycled into inks for reprinting, and our method can be applied to various types of waste papers. By employing multi-material printing, our approach can be extended to produce multi-coloured constructs, security information printings, and mechanically appealing designs. This strategy offers an innovative and sustainable solution that addresses the need for repurposing paper wastes, which would otherwise end up in landfills, while concurrently reducing the reliance on virgin plastics for 3D printing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信