{"title":"以气凝胶为基础收集来自天平点轨道的小行星喷出物质:动力学和捕获设计","authors":"Carlo Burattini, Camilla Colombo, Mirko Trisolini","doi":"10.1007/s42064-023-0197-x","DOIUrl":null,"url":null,"abstract":"<div><p>Scientific interest in asteroids and their physical characteristics is growing. These bodies provide insights into the primordial solar system and represent a valuable source of metals, silicates, and water. Several missions over the past few years have aimed to improve and better identify the main properties of these poorly known celestial bodies. However, these missions relied on touchdown(s) on the target asteroid to gather samples, which is complicated owing to the difficulty of accurately reaching and rendezvousing with the body. This study aims to assess the feasibility of an in-orbit asteroid sample collection mission. Such a strategy could prevent complex operations related to landing and touchdown maneuvers and avoid the dead times present in a mission requiring several landings. The presented collection scenario, which focuses on the asteroid Ryugu, proposes gathering samples using a spacecraft injected into a halo orbit around the second libration point, <i>L</i><sub>2</sub>. For this purpose, the orbits in the neck region of the zero velocity curves are analyzed. A novel methodology to characterize bouncing behavior is introduced. An interpolation-based approach was used to recover the appropriate restitution coefficients for each collision occurring at a specific impact angle. This was applied to both the rigid body model and the point mass approximation studied for two different sites on the asteroid. Furthermore, the study enlarged the region of interest from only <i>L</i><sub>2</sub> to its neighboring zones to return a more global and realistic point of view. Considering the solar radiation pressure and asteroid aspherical potential, particles of different sizes ejected from different longitudes and with different ejection angles were classified according to their trajectories to finally build a database. Based on this analysis, an aerogel-based collection strategy inspired by that used in the Stardust-NExT (NASA) mission was investigated to assess its possible applicability to the analyzed scenario.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"8 4","pages":"529 - 551"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-023-0197-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Aerogel-based collection of ejecta material from asteroids from libration point orbits: Dynamics and capture design\",\"authors\":\"Carlo Burattini, Camilla Colombo, Mirko Trisolini\",\"doi\":\"10.1007/s42064-023-0197-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Scientific interest in asteroids and their physical characteristics is growing. These bodies provide insights into the primordial solar system and represent a valuable source of metals, silicates, and water. Several missions over the past few years have aimed to improve and better identify the main properties of these poorly known celestial bodies. However, these missions relied on touchdown(s) on the target asteroid to gather samples, which is complicated owing to the difficulty of accurately reaching and rendezvousing with the body. This study aims to assess the feasibility of an in-orbit asteroid sample collection mission. Such a strategy could prevent complex operations related to landing and touchdown maneuvers and avoid the dead times present in a mission requiring several landings. The presented collection scenario, which focuses on the asteroid Ryugu, proposes gathering samples using a spacecraft injected into a halo orbit around the second libration point, <i>L</i><sub>2</sub>. For this purpose, the orbits in the neck region of the zero velocity curves are analyzed. A novel methodology to characterize bouncing behavior is introduced. An interpolation-based approach was used to recover the appropriate restitution coefficients for each collision occurring at a specific impact angle. This was applied to both the rigid body model and the point mass approximation studied for two different sites on the asteroid. Furthermore, the study enlarged the region of interest from only <i>L</i><sub>2</sub> to its neighboring zones to return a more global and realistic point of view. Considering the solar radiation pressure and asteroid aspherical potential, particles of different sizes ejected from different longitudes and with different ejection angles were classified according to their trajectories to finally build a database. Based on this analysis, an aerogel-based collection strategy inspired by that used in the Stardust-NExT (NASA) mission was investigated to assess its possible applicability to the analyzed scenario.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":\"8 4\",\"pages\":\"529 - 551\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42064-023-0197-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-023-0197-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0197-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Aerogel-based collection of ejecta material from asteroids from libration point orbits: Dynamics and capture design
Scientific interest in asteroids and their physical characteristics is growing. These bodies provide insights into the primordial solar system and represent a valuable source of metals, silicates, and water. Several missions over the past few years have aimed to improve and better identify the main properties of these poorly known celestial bodies. However, these missions relied on touchdown(s) on the target asteroid to gather samples, which is complicated owing to the difficulty of accurately reaching and rendezvousing with the body. This study aims to assess the feasibility of an in-orbit asteroid sample collection mission. Such a strategy could prevent complex operations related to landing and touchdown maneuvers and avoid the dead times present in a mission requiring several landings. The presented collection scenario, which focuses on the asteroid Ryugu, proposes gathering samples using a spacecraft injected into a halo orbit around the second libration point, L2. For this purpose, the orbits in the neck region of the zero velocity curves are analyzed. A novel methodology to characterize bouncing behavior is introduced. An interpolation-based approach was used to recover the appropriate restitution coefficients for each collision occurring at a specific impact angle. This was applied to both the rigid body model and the point mass approximation studied for two different sites on the asteroid. Furthermore, the study enlarged the region of interest from only L2 to its neighboring zones to return a more global and realistic point of view. Considering the solar radiation pressure and asteroid aspherical potential, particles of different sizes ejected from different longitudes and with different ejection angles were classified according to their trajectories to finally build a database. Based on this analysis, an aerogel-based collection strategy inspired by that used in the Stardust-NExT (NASA) mission was investigated to assess its possible applicability to the analyzed scenario.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.