论乳糖晶体从过饱和溶液中生长的机理

IF 0.6 4区 材料科学 Q4 CRYSTALLOGRAPHY
E. A. Fialkova, V. B. Shevchuk, A. I. Gnezdilova, Y. V. Vinogradova, V. I. Baronov
{"title":"论乳糖晶体从过饱和溶液中生长的机理","authors":"E. A. Fialkova,&nbsp;V. B. Shevchuk,&nbsp;A. I. Gnezdilova,&nbsp;Y. V. Vinogradova,&nbsp;V. I. Baronov","doi":"10.1134/S1063774524601321","DOIUrl":null,"url":null,"abstract":"<p>The existence of cavitation zones on the faces of a growing lactose crystal and the driving role of cavitation in the crystal growth have been substantiated. It is shown that the most favorable conditions for the conversion of dissolved lactose into the crystalline state are formed around crystal edges in the phase transition zones. The size of the phase transition zone of the crystallizing substance is calculated and compared with the available data on the sizes of crystalline nuclei. The radii of the cavitation zones were found to be <i>r</i><sub>2</sub> ~ 7 nm (for a crystal with a size of 60.5 µm, at a temperature of 30°C and supersaturation of 0.55) and <i>r</i><sub>2</sub> ~ 30 nm (for a 84-µm crystal, at a temperature of 50°C and supersaturation of 1.88). A mathematical model of the growth rate of lactose crystal in a supersaturated solution is proposed. The possibility of studying the crystallization mechanisms and determining the growth rate of lactose crystals based on the theory of dynamic interaction bodies and liquids by A.Y. Milovich is substantiated.</p>","PeriodicalId":527,"journal":{"name":"Crystallography Reports","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Mechanism of Growth of Lactose Crystals from Supersaturated Solutions\",\"authors\":\"E. A. Fialkova,&nbsp;V. B. Shevchuk,&nbsp;A. I. Gnezdilova,&nbsp;Y. V. Vinogradova,&nbsp;V. I. Baronov\",\"doi\":\"10.1134/S1063774524601321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The existence of cavitation zones on the faces of a growing lactose crystal and the driving role of cavitation in the crystal growth have been substantiated. It is shown that the most favorable conditions for the conversion of dissolved lactose into the crystalline state are formed around crystal edges in the phase transition zones. The size of the phase transition zone of the crystallizing substance is calculated and compared with the available data on the sizes of crystalline nuclei. The radii of the cavitation zones were found to be <i>r</i><sub>2</sub> ~ 7 nm (for a crystal with a size of 60.5 µm, at a temperature of 30°C and supersaturation of 0.55) and <i>r</i><sub>2</sub> ~ 30 nm (for a 84-µm crystal, at a temperature of 50°C and supersaturation of 1.88). A mathematical model of the growth rate of lactose crystal in a supersaturated solution is proposed. The possibility of studying the crystallization mechanisms and determining the growth rate of lactose crystals based on the theory of dynamic interaction bodies and liquids by A.Y. Milovich is substantiated.</p>\",\"PeriodicalId\":527,\"journal\":{\"name\":\"Crystallography Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystallography Reports\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063774524601321\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystallography Reports","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1063774524601321","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

研究证实了在生长的乳糖晶体表面存在空化区以及空化在晶体生长中的驱动作用。研究表明,在相变区的晶体边缘形成了溶解乳糖转化为结晶态的最有利条件。计算了结晶物质相变区的大小,并与现有的结晶核大小数据进行了比较。发现空化区的半径为 r2 ~ 7 nm(对于尺寸为 60.5 µm 的晶体,温度为 30°C,过饱和度为 0.55)和 r2 ~ 30 nm(对于尺寸为 84 µm 的晶体,温度为 50°C,过饱和度为 1.88)。提出了过饱和溶液中乳糖晶体生长速率的数学模型。根据 A.Y. Milovich 的动态相互作用体和液体理论,研究结晶机制和确定乳糖晶体生长率的可能性得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Mechanism of Growth of Lactose Crystals from Supersaturated Solutions

On the Mechanism of Growth of Lactose Crystals from Supersaturated Solutions

The existence of cavitation zones on the faces of a growing lactose crystal and the driving role of cavitation in the crystal growth have been substantiated. It is shown that the most favorable conditions for the conversion of dissolved lactose into the crystalline state are formed around crystal edges in the phase transition zones. The size of the phase transition zone of the crystallizing substance is calculated and compared with the available data on the sizes of crystalline nuclei. The radii of the cavitation zones were found to be r2 ~ 7 nm (for a crystal with a size of 60.5 µm, at a temperature of 30°C and supersaturation of 0.55) and r2 ~ 30 nm (for a 84-µm crystal, at a temperature of 50°C and supersaturation of 1.88). A mathematical model of the growth rate of lactose crystal in a supersaturated solution is proposed. The possibility of studying the crystallization mechanisms and determining the growth rate of lactose crystals based on the theory of dynamic interaction bodies and liquids by A.Y. Milovich is substantiated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystallography Reports
Crystallography Reports 化学-晶体学
CiteScore
1.10
自引率
28.60%
发文量
96
审稿时长
4-8 weeks
期刊介绍: Crystallography Reports is a journal that publishes original articles short communications, and reviews on various aspects of crystallography: diffraction and scattering of X-rays, electrons, and neutrons, determination of crystal structure of inorganic and organic substances, including proteins and other biological substances; UV-VIS and IR spectroscopy; growth, imperfect structure and physical properties of crystals; thin films, liquid crystals, nanomaterials, partially disordered systems, and the methods of studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信