O. V. Shvetsov, A. D. Alfimov, B. S. Ermakov, S. Yu. Kondrat’ev
{"title":"微观结构对 1953 和 2024 铝合金钻杆断裂行为和疲劳性能的影响","authors":"O. V. Shvetsov, A. D. Alfimov, B. S. Ermakov, S. Yu. Kondrat’ev","doi":"10.1007/s11041-024-01029-x","DOIUrl":null,"url":null,"abstract":"<p>The effect of microstructure on fatigue properties and fracture mechanisms in drill pipes made of aluminum alloys 1953 and 2024 (D16) has been studied experimentally. It is shown that the more hardened α-solid solution and the presence of reinforcing intermetallics MgZn<sub>2</sub> and Al<sub>2</sub>CuMg in the structure of alloy 1953 provide more effective resistance to fatigue crack nucleation as compared to alloy 2024 with Al<sub>2</sub>CuMg and Al<sub>2</sub>Cu intermetallics and a less hardened matrix α-solid solution. Accordingly, the fatigue limit of the pipe made of alloy 1953 is 192 MPa, and that of alloy 2024 is 179 MPa. However, the ratio of the fatigue limit to the yield strength of the aluminum alloy 2024 is 40%, while for the 1953 alloy it is 32%. This is explained by a higher fracture toughness of alloy 2024 as compared to 1953, a greater degree of deformation and uniformity of the structure of alloy 2024.</p>","PeriodicalId":701,"journal":{"name":"Metal Science and Heat Treatment","volume":"66 3-4","pages":"130 - 136"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Microstructure on the Fracture Behavior and Fatigue Properties of Drill Pipes from Aluminum Alloys 1953 and 2024\",\"authors\":\"O. V. Shvetsov, A. D. Alfimov, B. S. Ermakov, S. Yu. Kondrat’ev\",\"doi\":\"10.1007/s11041-024-01029-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of microstructure on fatigue properties and fracture mechanisms in drill pipes made of aluminum alloys 1953 and 2024 (D16) has been studied experimentally. It is shown that the more hardened α-solid solution and the presence of reinforcing intermetallics MgZn<sub>2</sub> and Al<sub>2</sub>CuMg in the structure of alloy 1953 provide more effective resistance to fatigue crack nucleation as compared to alloy 2024 with Al<sub>2</sub>CuMg and Al<sub>2</sub>Cu intermetallics and a less hardened matrix α-solid solution. Accordingly, the fatigue limit of the pipe made of alloy 1953 is 192 MPa, and that of alloy 2024 is 179 MPa. However, the ratio of the fatigue limit to the yield strength of the aluminum alloy 2024 is 40%, while for the 1953 alloy it is 32%. This is explained by a higher fracture toughness of alloy 2024 as compared to 1953, a greater degree of deformation and uniformity of the structure of alloy 2024.</p>\",\"PeriodicalId\":701,\"journal\":{\"name\":\"Metal Science and Heat Treatment\",\"volume\":\"66 3-4\",\"pages\":\"130 - 136\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal Science and Heat Treatment\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11041-024-01029-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science and Heat Treatment","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11041-024-01029-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of Microstructure on the Fracture Behavior and Fatigue Properties of Drill Pipes from Aluminum Alloys 1953 and 2024
The effect of microstructure on fatigue properties and fracture mechanisms in drill pipes made of aluminum alloys 1953 and 2024 (D16) has been studied experimentally. It is shown that the more hardened α-solid solution and the presence of reinforcing intermetallics MgZn2 and Al2CuMg in the structure of alloy 1953 provide more effective resistance to fatigue crack nucleation as compared to alloy 2024 with Al2CuMg and Al2Cu intermetallics and a less hardened matrix α-solid solution. Accordingly, the fatigue limit of the pipe made of alloy 1953 is 192 MPa, and that of alloy 2024 is 179 MPa. However, the ratio of the fatigue limit to the yield strength of the aluminum alloy 2024 is 40%, while for the 1953 alloy it is 32%. This is explained by a higher fracture toughness of alloy 2024 as compared to 1953, a greater degree of deformation and uniformity of the structure of alloy 2024.
期刊介绍:
Metal Science and Heat Treatment presents new fundamental and practical research in physical metallurgy, heat treatment equipment, and surface engineering.
Topics covered include:
New structural, high temperature, tool and precision steels;
Cold-resistant, corrosion-resistant and radiation-resistant steels;
Steels with rapid decline of induced properties;
Alloys with shape memory effect;
Bulk-amorphyzable metal alloys;
Microcrystalline alloys;
Nano materials and foam materials for medical use.