Marjan Hezarkhani, Selma Ustürk, Cahit Özbilenler, Elvan Yilmaz
{"title":"由聚(N-乙烯基咪唑)功能化的具有 pH 响应性的普鲁兰基吸附剂:合成、表征和染料去除应用","authors":"Marjan Hezarkhani, Selma Ustürk, Cahit Özbilenler, Elvan Yilmaz","doi":"10.3103/S1063455X24050084","DOIUrl":null,"url":null,"abstract":"<p>In this study, a pullulan hydrogel is grafted by poly(<i>N</i>-vinylimidazole) (PNVI) in a heterogeneous acidic medium under a nitrogen atmosphere for Methyl Orange (MO) and Acid Green 25 (AG25) dye removal application. The effect of monomer concentration as a significant parameter for grafting yield is investigated thoroughly, and it is demonstrated that 189% grafting yield of PNVI grafted onto epichlorohydrin crosslinked pullulan (pullulan-ECH-<i>graft</i>-PNVI) can be obtained under proper conditions. Equilibrium water absorption capacity values reveal the pH-responsivity of pullulan-ECH-<i>graft</i>-PNVI hydrogels (6000%) as compared to the epichlorohydrin crosslinked pullulan (pullulan-ECH) hydrogel (1000%) counterpart. Further characterization of the samples was performed by Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Adsorption of MO and AG25 on pullulan-ECH-<i>graft</i>-PNVI samples was studied at various pH, dye concentration, and time. The optimal adsorption pH value was measured at pH 3.0 with an adsorption capacity of 36.6 mg MO/g adsorbent and 5.72 mg AG25/g adsorbent. Isotherms and kinetic studies describe the adsorption profiles of the samples. The adsorption trends of the samples best fit the Freundlich model, which supports heterolayer dye adsorption and surface heterogeneity. Adsorption kinetic results indicate a pseudo-second-order kinetic model, which shows chemisorption.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":"46 5","pages":"531 - 542"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH-Responsive Pullulan Based Adsorbent Functionalized by Poly(N-vinylimidazole): Synthesis, Characterization and Dye Removal Application\",\"authors\":\"Marjan Hezarkhani, Selma Ustürk, Cahit Özbilenler, Elvan Yilmaz\",\"doi\":\"10.3103/S1063455X24050084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a pullulan hydrogel is grafted by poly(<i>N</i>-vinylimidazole) (PNVI) in a heterogeneous acidic medium under a nitrogen atmosphere for Methyl Orange (MO) and Acid Green 25 (AG25) dye removal application. The effect of monomer concentration as a significant parameter for grafting yield is investigated thoroughly, and it is demonstrated that 189% grafting yield of PNVI grafted onto epichlorohydrin crosslinked pullulan (pullulan-ECH-<i>graft</i>-PNVI) can be obtained under proper conditions. Equilibrium water absorption capacity values reveal the pH-responsivity of pullulan-ECH-<i>graft</i>-PNVI hydrogels (6000%) as compared to the epichlorohydrin crosslinked pullulan (pullulan-ECH) hydrogel (1000%) counterpart. Further characterization of the samples was performed by Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Adsorption of MO and AG25 on pullulan-ECH-<i>graft</i>-PNVI samples was studied at various pH, dye concentration, and time. The optimal adsorption pH value was measured at pH 3.0 with an adsorption capacity of 36.6 mg MO/g adsorbent and 5.72 mg AG25/g adsorbent. Isotherms and kinetic studies describe the adsorption profiles of the samples. The adsorption trends of the samples best fit the Freundlich model, which supports heterolayer dye adsorption and surface heterogeneity. Adsorption kinetic results indicate a pseudo-second-order kinetic model, which shows chemisorption.</p>\",\"PeriodicalId\":680,\"journal\":{\"name\":\"Journal of Water Chemistry and Technology\",\"volume\":\"46 5\",\"pages\":\"531 - 542\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Chemistry and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063455X24050084\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24050084","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
pH-Responsive Pullulan Based Adsorbent Functionalized by Poly(N-vinylimidazole): Synthesis, Characterization and Dye Removal Application
In this study, a pullulan hydrogel is grafted by poly(N-vinylimidazole) (PNVI) in a heterogeneous acidic medium under a nitrogen atmosphere for Methyl Orange (MO) and Acid Green 25 (AG25) dye removal application. The effect of monomer concentration as a significant parameter for grafting yield is investigated thoroughly, and it is demonstrated that 189% grafting yield of PNVI grafted onto epichlorohydrin crosslinked pullulan (pullulan-ECH-graft-PNVI) can be obtained under proper conditions. Equilibrium water absorption capacity values reveal the pH-responsivity of pullulan-ECH-graft-PNVI hydrogels (6000%) as compared to the epichlorohydrin crosslinked pullulan (pullulan-ECH) hydrogel (1000%) counterpart. Further characterization of the samples was performed by Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Adsorption of MO and AG25 on pullulan-ECH-graft-PNVI samples was studied at various pH, dye concentration, and time. The optimal adsorption pH value was measured at pH 3.0 with an adsorption capacity of 36.6 mg MO/g adsorbent and 5.72 mg AG25/g adsorbent. Isotherms and kinetic studies describe the adsorption profiles of the samples. The adsorption trends of the samples best fit the Freundlich model, which supports heterolayer dye adsorption and surface heterogeneity. Adsorption kinetic results indicate a pseudo-second-order kinetic model, which shows chemisorption.
期刊介绍:
Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.