机器学习在社会科学中真的不安全、不负责任吗?累犯预测任务中的悖论与再思考

IF 1.8 4区 社会学 Q2 CRIMINOLOGY & PENOLOGY
Jianhong Liu, Dianshi Moses Li
{"title":"机器学习在社会科学中真的不安全、不负责任吗?累犯预测任务中的悖论与再思考","authors":"Jianhong Liu,&nbsp;Dianshi Moses Li","doi":"10.1007/s11417-024-09429-x","DOIUrl":null,"url":null,"abstract":"<div><p>The paper addresses some fundamental and hotly debated issues for high-stakes event predictions underpinning the computational approach to social sciences, especially in criminology and criminal justice. We question several prevalent views against machine learning and outline a new paradigm that highlights the promises and promotes the infusion of computational methods and conventional social science approaches.</p></div>","PeriodicalId":45526,"journal":{"name":"Asian Journal of Criminology","volume":"19 2","pages":"143 - 159"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is Machine Learning Really Unsafe and Irresponsible in Social Sciences? Paradoxes and Reconsideration from Recidivism Prediction Tasks\",\"authors\":\"Jianhong Liu,&nbsp;Dianshi Moses Li\",\"doi\":\"10.1007/s11417-024-09429-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper addresses some fundamental and hotly debated issues for high-stakes event predictions underpinning the computational approach to social sciences, especially in criminology and criminal justice. We question several prevalent views against machine learning and outline a new paradigm that highlights the promises and promotes the infusion of computational methods and conventional social science approaches.</p></div>\",\"PeriodicalId\":45526,\"journal\":{\"name\":\"Asian Journal of Criminology\",\"volume\":\"19 2\",\"pages\":\"143 - 159\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Criminology\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11417-024-09429-x\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRIMINOLOGY & PENOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Criminology","FirstCategoryId":"90","ListUrlMain":"https://link.springer.com/article/10.1007/s11417-024-09429-x","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRIMINOLOGY & PENOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了社会科学(尤其是犯罪学和刑事司法领域)计算方法在高风险事件预测方面的一些基本问题和激烈争论。我们对反对机器学习的几种流行观点提出质疑,并概述了一种新的范式,这种范式强调了计算方法和传统社会科学方法的前景,并促进了计算方法和传统社会科学方法的融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is Machine Learning Really Unsafe and Irresponsible in Social Sciences? Paradoxes and Reconsideration from Recidivism Prediction Tasks

The paper addresses some fundamental and hotly debated issues for high-stakes event predictions underpinning the computational approach to social sciences, especially in criminology and criminal justice. We question several prevalent views against machine learning and outline a new paradigm that highlights the promises and promotes the infusion of computational methods and conventional social science approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Criminology
Asian Journal of Criminology CRIMINOLOGY & PENOLOGY-
CiteScore
3.00
自引率
10.50%
发文量
31
期刊介绍: Electronic submission now possible! Please see the Instructions for Authors. For general information about this new journal please contact the publisher at [welmoed.spahr@springer.com] The Asian Journal of Criminology aims to advance the study of criminology and criminal justice in Asia, to promote evidence-based public policy in crime prevention, and to promote comparative studies about crime and criminal justice. The Journal provides a platform for criminologists, policymakers, and practitioners and welcomes manuscripts relating to crime, crime prevention, criminal law, medico-legal topics and the administration of criminal justice in Asian countries. The Journal especially encourages theoretical and methodological papers with an emphasis on evidence-based, empirical research addressing crime in Asian contexts. It seeks to publish research arising from a broad variety of methodological traditions, including quantitative, qualitative, historical, and comparative methods. The Journal fosters a multi-disciplinary focus and welcomes manuscripts from a variety of disciplines, including criminology, criminal justice, law, sociology, psychology, forensic science, social work, urban studies, history, and geography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信