{"title":"borelT.m:用 Mathematica 计算 QCD 和则中的 Borel 变换","authors":"Tarik Akan","doi":"10.1007/s10773-024-05791-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the literature, there are many algorithms for the computation of Feynman diagrams (Hahn, Nucl. Phys. B Proc. Suppl. <b>89</b>, 231–236 2000; Smirnov and Zeng, Comput. Phys. Commun. <b>302</b>, 109261 2024; Patel, Comput. Phys. Commun. <b>197</b>, 276–290 2015). QCD Sum Rules, however, differ from standard loop computations in several key aspects. One of the fundamental distinctions of the QCD Sum Rules technique is the inclusion of the Borel transformation (Shifman et al. Nucl. Phys. B <b>147</b>, 448–518 1979). To address this critical component, the borelT package is developed in Mathematica (Wolfram Research, Inc., 2023) , ensuring the integration of the Borel transformation into the algorithms.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"63 9","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"borelT.m: Borel Transformations in QCD Sum Rules with Mathematica\",\"authors\":\"Tarik Akan\",\"doi\":\"10.1007/s10773-024-05791-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the literature, there are many algorithms for the computation of Feynman diagrams (Hahn, Nucl. Phys. B Proc. Suppl. <b>89</b>, 231–236 2000; Smirnov and Zeng, Comput. Phys. Commun. <b>302</b>, 109261 2024; Patel, Comput. Phys. Commun. <b>197</b>, 276–290 2015). QCD Sum Rules, however, differ from standard loop computations in several key aspects. One of the fundamental distinctions of the QCD Sum Rules technique is the inclusion of the Borel transformation (Shifman et al. Nucl. Phys. B <b>147</b>, 448–518 1979). To address this critical component, the borelT package is developed in Mathematica (Wolfram Research, Inc., 2023) , ensuring the integration of the Borel transformation into the algorithms.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"63 9\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-024-05791-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05791-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在文献中,有许多计算费曼图的算法(Hahn,Nucl.Phys.89, 231-236 2000; Smirnov and Zeng, Comput.Phys.302, 109261 2024; Patel, Comput.Phys.197, 276-290 2015).然而,QCD 和规则在几个关键方面与标准环计算不同。QCD 和则技术的基本区别之一是包含了伯尔变换(Shifman 等人,Nucl. Phys. B 147, 448-518 1979)。为了解决这一关键问题,我们在 Mathematica(Wolfram Research, Inc.
borelT.m: Borel Transformations in QCD Sum Rules with Mathematica
In the literature, there are many algorithms for the computation of Feynman diagrams (Hahn, Nucl. Phys. B Proc. Suppl. 89, 231–236 2000; Smirnov and Zeng, Comput. Phys. Commun. 302, 109261 2024; Patel, Comput. Phys. Commun. 197, 276–290 2015). QCD Sum Rules, however, differ from standard loop computations in several key aspects. One of the fundamental distinctions of the QCD Sum Rules technique is the inclusion of the Borel transformation (Shifman et al. Nucl. Phys. B 147, 448–518 1979). To address this critical component, the borelT package is developed in Mathematica (Wolfram Research, Inc., 2023) , ensuring the integration of the Borel transformation into the algorithms.
期刊介绍:
International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.