{"title":"自主航天器连续凸编程的状态相关信任区域","authors":"Nicolò Bernardini, Nicola Baresi, Roberto Armellin","doi":"10.1007/s42064-024-0200-1","DOIUrl":null,"url":null,"abstract":"<div><p>Spacecraft trajectory optimization is essential for all the different phases of a space mission, from its launch to end-of-life disposal. Due to the increase in the number of satellites and future space missions beyond our planet, increasing the level of autonomy of spacecraft is a key technical challenge. In this context, traditional trajectory optimization methods, like direct and indirect methods are not suited for autonomous or on-board operations due to the lack of guaranteed convergence or the high demand for computational power. Heuristic control laws represent an alternative in terms of computational power and convergence but they usually result in sub-optimal solutions. Successive convex programming (SCVX) enables to extend the application of convex optimization to non-linear optimal control problems. The definition of a good value of the trust region size plays a key role in the convergence of SCVX algorithms, and there is no systematic procedure to define it. This work presents an improved trust region based on the information given by the nonlinearities of the constraints which is unique for each optimization variable. In addition, differential algebra is adopted to automatize the transcription process required for SCVX algorithms. This new technique is first tested on a simple 2D problem as a benchmark of its performance and then applied to solve complex astrodynamics problems while providing a comparison with indirect, direct, and standard SCVX solutions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-024-0200-1.pdf","citationCount":"0","resultStr":"{\"title\":\"State-dependent trust region for successive convex programming for autonomous spacecraft\",\"authors\":\"Nicolò Bernardini, Nicola Baresi, Roberto Armellin\",\"doi\":\"10.1007/s42064-024-0200-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spacecraft trajectory optimization is essential for all the different phases of a space mission, from its launch to end-of-life disposal. Due to the increase in the number of satellites and future space missions beyond our planet, increasing the level of autonomy of spacecraft is a key technical challenge. In this context, traditional trajectory optimization methods, like direct and indirect methods are not suited for autonomous or on-board operations due to the lack of guaranteed convergence or the high demand for computational power. Heuristic control laws represent an alternative in terms of computational power and convergence but they usually result in sub-optimal solutions. Successive convex programming (SCVX) enables to extend the application of convex optimization to non-linear optimal control problems. The definition of a good value of the trust region size plays a key role in the convergence of SCVX algorithms, and there is no systematic procedure to define it. This work presents an improved trust region based on the information given by the nonlinearities of the constraints which is unique for each optimization variable. In addition, differential algebra is adopted to automatize the transcription process required for SCVX algorithms. This new technique is first tested on a simple 2D problem as a benchmark of its performance and then applied to solve complex astrodynamics problems while providing a comparison with indirect, direct, and standard SCVX solutions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42064-024-0200-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-024-0200-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0200-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
State-dependent trust region for successive convex programming for autonomous spacecraft
Spacecraft trajectory optimization is essential for all the different phases of a space mission, from its launch to end-of-life disposal. Due to the increase in the number of satellites and future space missions beyond our planet, increasing the level of autonomy of spacecraft is a key technical challenge. In this context, traditional trajectory optimization methods, like direct and indirect methods are not suited for autonomous or on-board operations due to the lack of guaranteed convergence or the high demand for computational power. Heuristic control laws represent an alternative in terms of computational power and convergence but they usually result in sub-optimal solutions. Successive convex programming (SCVX) enables to extend the application of convex optimization to non-linear optimal control problems. The definition of a good value of the trust region size plays a key role in the convergence of SCVX algorithms, and there is no systematic procedure to define it. This work presents an improved trust region based on the information given by the nonlinearities of the constraints which is unique for each optimization variable. In addition, differential algebra is adopted to automatize the transcription process required for SCVX algorithms. This new technique is first tested on a simple 2D problem as a benchmark of its performance and then applied to solve complex astrodynamics problems while providing a comparison with indirect, direct, and standard SCVX solutions.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.