冻融循环后预开裂青砂岩力学性能削弱及损伤构成模型研究

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Wanru Li, Chunyang Zhang, Ercheng Zhao, Tao Tan, Qinglin Ren, Shibing Huang
{"title":"冻融循环后预开裂青砂岩力学性能削弱及损伤构成模型研究","authors":"Wanru Li,&nbsp;Chunyang Zhang,&nbsp;Ercheng Zhao,&nbsp;Tao Tan,&nbsp;Qinglin Ren,&nbsp;Shibing Huang","doi":"10.1007/s12665-024-11874-x","DOIUrl":null,"url":null,"abstract":"<div><p>Water-bearing fractured rock masses are prone to geological hazards due to freeze–thaw (FT) damage, which brings adverse effects on the stability of rock engineering. In order to study the FT damage characteristics of rocks, the intact and pre-cracked cyan sandstone samples were taken as the research objects, with pre-crack inclination angles <i>β</i> of 0°, 45°, and 90°, respectively. The effects of FT cycle on stress–strain curve, peak strength, apparent stiffness and FT coefficient of cyan sandstone samples were studied by uniaxial compression test. Based on macroscopic damage variables, a damage constitutive model of cyan sandstone is proposed combined with strain equivalence hypothesis and Weibull distribution hypothesis. Considering that the strain equivalence hypothesis is difficult to reflect the compaction effect of microcracks, the damage constitutive equation is modified by taking the ratio of the secant modulus of the actual stress–strain curve to that of the classical Lemaitre damage constitutive curve as the correction coefficient. The application results show that the modified constitutive model can well describe the stress–strain relationship of cyan sandstone before the peak strength, which verifies the reliability of the model parameters derived from the test data, and the practicability of the damage characterization method and correction coefficient. The results can provide theoretical reference for the study of FT damage of rocks in cold regions.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 19","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the weakening of mechanical properties and damage constitutive model of pre-cracked cyan sandstone after freeze–thaw cycles\",\"authors\":\"Wanru Li,&nbsp;Chunyang Zhang,&nbsp;Ercheng Zhao,&nbsp;Tao Tan,&nbsp;Qinglin Ren,&nbsp;Shibing Huang\",\"doi\":\"10.1007/s12665-024-11874-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water-bearing fractured rock masses are prone to geological hazards due to freeze–thaw (FT) damage, which brings adverse effects on the stability of rock engineering. In order to study the FT damage characteristics of rocks, the intact and pre-cracked cyan sandstone samples were taken as the research objects, with pre-crack inclination angles <i>β</i> of 0°, 45°, and 90°, respectively. The effects of FT cycle on stress–strain curve, peak strength, apparent stiffness and FT coefficient of cyan sandstone samples were studied by uniaxial compression test. Based on macroscopic damage variables, a damage constitutive model of cyan sandstone is proposed combined with strain equivalence hypothesis and Weibull distribution hypothesis. Considering that the strain equivalence hypothesis is difficult to reflect the compaction effect of microcracks, the damage constitutive equation is modified by taking the ratio of the secant modulus of the actual stress–strain curve to that of the classical Lemaitre damage constitutive curve as the correction coefficient. The application results show that the modified constitutive model can well describe the stress–strain relationship of cyan sandstone before the peak strength, which verifies the reliability of the model parameters derived from the test data, and the practicability of the damage characterization method and correction coefficient. The results can provide theoretical reference for the study of FT damage of rocks in cold regions.</p></div>\",\"PeriodicalId\":542,\"journal\":{\"name\":\"Environmental Earth Sciences\",\"volume\":\"83 19\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Earth Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12665-024-11874-x\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11874-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

含水裂隙岩体容易因冻融(FT)破坏而产生地质灾害,给岩石工程的稳定性带来不利影响。为了研究岩石的冻融破坏特征,以完整和预裂缝青砂岩样品为研究对象,预裂缝倾角β分别为0°、45°和90°。通过单轴压缩试验研究了 FT 周期对青色砂岩样品的应力-应变曲线、峰值强度、表观刚度和 FT 系数的影响。根据宏观损伤变量,结合应变等效假说和威布尔分布假说,提出了青砂岩的损伤构成模型。考虑到应变等效假说难以反映微裂缝的压实效应,以实际应力-应变曲线的正割模量与经典 Lemaitre 损伤组成曲线的正割模量之比作为修正系数,对损伤组成方程进行了修正。应用结果表明,修正后的构成模型能很好地描述青砂岩在强度峰值前的应力应变关系,验证了由试验数据推导出的模型参数的可靠性,以及损伤表征方法和修正系数的实用性。研究结果可为寒冷地区岩石的 FT 破坏研究提供理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the weakening of mechanical properties and damage constitutive model of pre-cracked cyan sandstone after freeze–thaw cycles

Water-bearing fractured rock masses are prone to geological hazards due to freeze–thaw (FT) damage, which brings adverse effects on the stability of rock engineering. In order to study the FT damage characteristics of rocks, the intact and pre-cracked cyan sandstone samples were taken as the research objects, with pre-crack inclination angles β of 0°, 45°, and 90°, respectively. The effects of FT cycle on stress–strain curve, peak strength, apparent stiffness and FT coefficient of cyan sandstone samples were studied by uniaxial compression test. Based on macroscopic damage variables, a damage constitutive model of cyan sandstone is proposed combined with strain equivalence hypothesis and Weibull distribution hypothesis. Considering that the strain equivalence hypothesis is difficult to reflect the compaction effect of microcracks, the damage constitutive equation is modified by taking the ratio of the secant modulus of the actual stress–strain curve to that of the classical Lemaitre damage constitutive curve as the correction coefficient. The application results show that the modified constitutive model can well describe the stress–strain relationship of cyan sandstone before the peak strength, which verifies the reliability of the model parameters derived from the test data, and the practicability of the damage characterization method and correction coefficient. The results can provide theoretical reference for the study of FT damage of rocks in cold regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信