{"title":"细菌种类对海洋结构中水泥基材料自愈合的影响","authors":"Mustafa Erbakan, Behlul Furkan Ozel, Yuşa Şahin","doi":"10.1617/s11527-024-02444-5","DOIUrl":null,"url":null,"abstract":"<div><p>Despite concrete being inherently strong and resilient, durability issues stemming from undesirable cracks can significantly reduce the lifespan of concrete structures or cause costly maintenance and repair procedures. Accordingly, the phenomenon of self-healing holds crucial importance in preserving the longevity of existing buildings. This study particularly focused on utilizing two seawater tolerant bacteria, <i>Marinobacterium litorale</i>, and <i>Halomonas elongata</i>, in cementitious systems to experimentally investigate their overall performances and self-healing capabilities. <i>Bacillus subtilis</i> and <i>Bacillus megaterium</i>, which had proven effective in earlier studies, were used as controls. To gain insight into the self-healing potential of bacterial strains, a comprehensive experimental program including flow table, compressive strength, flexural strength, ultrasonic pulse velocity, and capillary permeability tests were performed. Furthermore, the extent of self-healing was assessed using a digital camera to measure crack closure rates, and the healing products formed within cracks were characterized through FE-SEM–EDX, and XRD. Based on crack closure observations, mixtures containing <i>M. litorale</i> and <i>H. elongata</i> demonstrated superior self-healing performance, particularly in salt water environments. Consequently, both <i>M. litorale</i> and <i>H. elongata</i> exhibited promising mechanical and permeability performance, showcasing similar effectiveness to popular <i>Bacillus</i> strains.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial species impact on self-healing of cement based materials in marine structures\",\"authors\":\"Mustafa Erbakan, Behlul Furkan Ozel, Yuşa Şahin\",\"doi\":\"10.1617/s11527-024-02444-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite concrete being inherently strong and resilient, durability issues stemming from undesirable cracks can significantly reduce the lifespan of concrete structures or cause costly maintenance and repair procedures. Accordingly, the phenomenon of self-healing holds crucial importance in preserving the longevity of existing buildings. This study particularly focused on utilizing two seawater tolerant bacteria, <i>Marinobacterium litorale</i>, and <i>Halomonas elongata</i>, in cementitious systems to experimentally investigate their overall performances and self-healing capabilities. <i>Bacillus subtilis</i> and <i>Bacillus megaterium</i>, which had proven effective in earlier studies, were used as controls. To gain insight into the self-healing potential of bacterial strains, a comprehensive experimental program including flow table, compressive strength, flexural strength, ultrasonic pulse velocity, and capillary permeability tests were performed. Furthermore, the extent of self-healing was assessed using a digital camera to measure crack closure rates, and the healing products formed within cracks were characterized through FE-SEM–EDX, and XRD. Based on crack closure observations, mixtures containing <i>M. litorale</i> and <i>H. elongata</i> demonstrated superior self-healing performance, particularly in salt water environments. Consequently, both <i>M. litorale</i> and <i>H. elongata</i> exhibited promising mechanical and permeability performance, showcasing similar effectiveness to popular <i>Bacillus</i> strains.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"57 8\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-024-02444-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02444-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
尽管混凝土本身具有很强的强度和韧性,但由不良裂缝引发的耐久性问题会大大缩短混凝土结构的使用寿命,或导致昂贵的维护和维修费用。因此,自愈现象对于保护现有建筑物的寿命至关重要。本研究特别关注在水泥基系统中利用两种耐海水细菌(Marinobacterium litorale 和 Halomonas elongata),通过实验研究它们的整体性能和自愈合能力。在早期研究中被证明有效的枯草芽孢杆菌和巨大芽孢杆菌则被用作对照组。为了深入了解细菌菌株的自愈合潜力,进行了全面的实验,包括流动表、抗压强度、抗弯强度、超声波脉冲速度和毛细管渗透性测试。此外,还使用数码相机测量了裂缝闭合率,评估了自愈合的程度,并通过 FE-SEM-EDX 和 XRD 对裂缝内形成的愈合产物进行了表征。根据裂缝闭合观察结果,含有 M. litorale 和 H. elongata 的混合物表现出卓越的自愈合性能,尤其是在盐水环境中。因此,M. litorale 和 H. elongata 都表现出了良好的机械和渗透性能,与常用的芽孢杆菌菌株具有相似的功效。
Bacterial species impact on self-healing of cement based materials in marine structures
Despite concrete being inherently strong and resilient, durability issues stemming from undesirable cracks can significantly reduce the lifespan of concrete structures or cause costly maintenance and repair procedures. Accordingly, the phenomenon of self-healing holds crucial importance in preserving the longevity of existing buildings. This study particularly focused on utilizing two seawater tolerant bacteria, Marinobacterium litorale, and Halomonas elongata, in cementitious systems to experimentally investigate their overall performances and self-healing capabilities. Bacillus subtilis and Bacillus megaterium, which had proven effective in earlier studies, were used as controls. To gain insight into the self-healing potential of bacterial strains, a comprehensive experimental program including flow table, compressive strength, flexural strength, ultrasonic pulse velocity, and capillary permeability tests were performed. Furthermore, the extent of self-healing was assessed using a digital camera to measure crack closure rates, and the healing products formed within cracks were characterized through FE-SEM–EDX, and XRD. Based on crack closure observations, mixtures containing M. litorale and H. elongata demonstrated superior self-healing performance, particularly in salt water environments. Consequently, both M. litorale and H. elongata exhibited promising mechanical and permeability performance, showcasing similar effectiveness to popular Bacillus strains.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.