{"title":"流体热力学特性的渐近临界振幅","authors":"Azzedine Abbaci","doi":"10.1007/s10765-024-03425-0","DOIUrl":null,"url":null,"abstract":"<div><p>This work reports on the critical amplitudes of the thermodynamic properties of fluids, such as the specific heat, the coexistence-curve diameter, the susceptibility, the chemical potential, and the correlation length. These amplitudes are first determined from the crossover model and then correlated as a function of the acentric factor. A comparison with their values from the literature is also made. Finally, this work completes the critical amplitudes data of few fluids not reported in previous publications (Perkins et al., Int J Thermophys 34:191–212, 2013.https://doi.org/10.1007/s10765-013-1409-z ).</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 10","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Asymptotic Critical Amplitudes of the Thermodynamic Properties of Fluids\",\"authors\":\"Azzedine Abbaci\",\"doi\":\"10.1007/s10765-024-03425-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work reports on the critical amplitudes of the thermodynamic properties of fluids, such as the specific heat, the coexistence-curve diameter, the susceptibility, the chemical potential, and the correlation length. These amplitudes are first determined from the crossover model and then correlated as a function of the acentric factor. A comparison with their values from the literature is also made. Finally, this work completes the critical amplitudes data of few fluids not reported in previous publications (Perkins et al., Int J Thermophys 34:191–212, 2013.https://doi.org/10.1007/s10765-013-1409-z ).</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"45 10\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03425-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03425-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The Asymptotic Critical Amplitudes of the Thermodynamic Properties of Fluids
This work reports on the critical amplitudes of the thermodynamic properties of fluids, such as the specific heat, the coexistence-curve diameter, the susceptibility, the chemical potential, and the correlation length. These amplitudes are first determined from the crossover model and then correlated as a function of the acentric factor. A comparison with their values from the literature is also made. Finally, this work completes the critical amplitudes data of few fluids not reported in previous publications (Perkins et al., Int J Thermophys 34:191–212, 2013.https://doi.org/10.1007/s10765-013-1409-z ).
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.