{"title":"论放电管壁在外部照射下的充电过程","authors":"A. V. Meshchanov, Yu. Z. Ionikh","doi":"10.1134/S1063780X24601147","DOIUrl":null,"url":null,"abstract":"<p>The breakdown and discharge ignition in discharge tubes with a diameter of about 1 cm and a length of 80 cm in inert gases (neon, argon, krypton, and xenon) at a pressure of about 1 Torr are studied experimentally. The tube is illuminated by radiation from continuous or pulsed light sources in the visible spectrum range. A ramp voltage with a small slope steepness (of about 50 V/s) is applied to the anode of the tube. Previously, the authors established that under these conditions external illumination can increase the breakdown voltage in several times. This effect was explained by the appearance of a charge on the tube wall as a result of photodesorption of electrons from its inner surface. In this work, it is found that charging the wall begins only when the anode potential approaches the breakdown potential measured without illumination. In addition, it is found that during the increase in the voltage on the anode and charging the wall, the anode potential differs from the breakdown potential by a constant and small value (less than 200 V).</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 8","pages":"991 - 998"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Processes of Charging the Wall of a Discharge Tube under External Illumination\",\"authors\":\"A. V. Meshchanov, Yu. Z. Ionikh\",\"doi\":\"10.1134/S1063780X24601147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The breakdown and discharge ignition in discharge tubes with a diameter of about 1 cm and a length of 80 cm in inert gases (neon, argon, krypton, and xenon) at a pressure of about 1 Torr are studied experimentally. The tube is illuminated by radiation from continuous or pulsed light sources in the visible spectrum range. A ramp voltage with a small slope steepness (of about 50 V/s) is applied to the anode of the tube. Previously, the authors established that under these conditions external illumination can increase the breakdown voltage in several times. This effect was explained by the appearance of a charge on the tube wall as a result of photodesorption of electrons from its inner surface. In this work, it is found that charging the wall begins only when the anode potential approaches the breakdown potential measured without illumination. In addition, it is found that during the increase in the voltage on the anode and charging the wall, the anode potential differs from the breakdown potential by a constant and small value (less than 200 V).</p>\",\"PeriodicalId\":735,\"journal\":{\"name\":\"Plasma Physics Reports\",\"volume\":\"50 8\",\"pages\":\"991 - 998\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063780X24601147\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X24601147","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
On the Processes of Charging the Wall of a Discharge Tube under External Illumination
The breakdown and discharge ignition in discharge tubes with a diameter of about 1 cm and a length of 80 cm in inert gases (neon, argon, krypton, and xenon) at a pressure of about 1 Torr are studied experimentally. The tube is illuminated by radiation from continuous or pulsed light sources in the visible spectrum range. A ramp voltage with a small slope steepness (of about 50 V/s) is applied to the anode of the tube. Previously, the authors established that under these conditions external illumination can increase the breakdown voltage in several times. This effect was explained by the appearance of a charge on the tube wall as a result of photodesorption of electrons from its inner surface. In this work, it is found that charging the wall begins only when the anode potential approaches the breakdown potential measured without illumination. In addition, it is found that during the increase in the voltage on the anode and charging the wall, the anode potential differs from the breakdown potential by a constant and small value (less than 200 V).
期刊介绍:
Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.