贝索夫-莫雷空间的嵌入定理

IF 0.8 Q2 MATHEMATICS
Arash Ghorbanalizadeh, Tahereh Khazaee
{"title":"贝索夫-莫雷空间的嵌入定理","authors":"Arash Ghorbanalizadeh,&nbsp;Tahereh Khazaee","doi":"10.1007/s43036-024-00377-y","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this paper is to investigate the embedding theorems for Besov–Morrey spaces using the equivalence theorem for the <i>K</i>-functional and the modulus of continuity on Morrey spaces. First, we obtain some theorems in ball Banach function space and then focus on Morrey spaces. The Marchaud’s inequality on Morrey spaces and a specific case of embedding theorems for Sobolev–Morrey spaces are crucial tools. We show that the Besov–Morrey space <span>\\(B_{\\alpha , a}^{p,\\lambda }(\\mathbb {R}^{n})\\)</span> is continuously embedded in the Morrey-Lorentz space <span>\\(\\mathcal {M}_{q,p}^{\\lambda }(\\mathbb {R}^{n})\\)</span>, and also, for any <span>\\(\\alpha , \\beta &gt; 0\\)</span> and <span>\\(1&lt; a\\le p &lt; q \\le \\infty \\)</span>, the Besov–Morrey space <span>\\(B_{\\alpha + \\beta , a}^{p,\\lambda }(\\mathbb {R}^{n})\\)</span> is continuously embedded in the Besov–Morrey space <span>\\(B_{\\beta , a}^{q,\\lambda }(\\mathbb {R}^{n})\\)</span>.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding theorems for Besov–Morrey spaces\",\"authors\":\"Arash Ghorbanalizadeh,&nbsp;Tahereh Khazaee\",\"doi\":\"10.1007/s43036-024-00377-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this paper is to investigate the embedding theorems for Besov–Morrey spaces using the equivalence theorem for the <i>K</i>-functional and the modulus of continuity on Morrey spaces. First, we obtain some theorems in ball Banach function space and then focus on Morrey spaces. The Marchaud’s inequality on Morrey spaces and a specific case of embedding theorems for Sobolev–Morrey spaces are crucial tools. We show that the Besov–Morrey space <span>\\\\(B_{\\\\alpha , a}^{p,\\\\lambda }(\\\\mathbb {R}^{n})\\\\)</span> is continuously embedded in the Morrey-Lorentz space <span>\\\\(\\\\mathcal {M}_{q,p}^{\\\\lambda }(\\\\mathbb {R}^{n})\\\\)</span>, and also, for any <span>\\\\(\\\\alpha , \\\\beta &gt; 0\\\\)</span> and <span>\\\\(1&lt; a\\\\le p &lt; q \\\\le \\\\infty \\\\)</span>, the Besov–Morrey space <span>\\\\(B_{\\\\alpha + \\\\beta , a}^{p,\\\\lambda }(\\\\mathbb {R}^{n})\\\\)</span> is continuously embedded in the Besov–Morrey space <span>\\\\(B_{\\\\beta , a}^{q,\\\\lambda }(\\\\mathbb {R}^{n})\\\\)</span>.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00377-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00377-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在利用 K 函数的等价定理和 Morrey 空间的连续性模量,研究 Besov-Morrey 空间的嵌入定理。首先,我们得到球巴纳赫函数空间的一些定理,然后重点研究莫雷空间。Morrey 空间上的 Marchaud 不等式和 Sobolev-Morrey 空间的特定嵌入定理是至关重要的工具。我们证明贝索夫-莫雷空间(B_{alpha , a}^{p,\lambda }(\mathbb {R}^{n})\) 连续嵌入莫雷-洛伦兹空间(Morrey-Lorentz space \(\mathcal {M}_{q,p}^{lambda }(\mathbb {R}^{n})\) 中,而且,对于任意 \(\alpha , \beta >;0) and\(1< a\le p <;q le \infty \),贝索夫-莫雷空间 \(B_{\alpha + \beta , a}^{p,\lambda }(\mathbb{R}^{n})\)连续嵌入贝索夫-莫雷空间 \(B_{\beta , a}^{q,\lambda }(\mathbb{R}^{n})\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding theorems for Besov–Morrey spaces

The purpose of this paper is to investigate the embedding theorems for Besov–Morrey spaces using the equivalence theorem for the K-functional and the modulus of continuity on Morrey spaces. First, we obtain some theorems in ball Banach function space and then focus on Morrey spaces. The Marchaud’s inequality on Morrey spaces and a specific case of embedding theorems for Sobolev–Morrey spaces are crucial tools. We show that the Besov–Morrey space \(B_{\alpha , a}^{p,\lambda }(\mathbb {R}^{n})\) is continuously embedded in the Morrey-Lorentz space \(\mathcal {M}_{q,p}^{\lambda }(\mathbb {R}^{n})\), and also, for any \(\alpha , \beta > 0\) and \(1< a\le p < q \le \infty \), the Besov–Morrey space \(B_{\alpha + \beta , a}^{p,\lambda }(\mathbb {R}^{n})\) is continuously embedded in the Besov–Morrey space \(B_{\beta , a}^{q,\lambda }(\mathbb {R}^{n})\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信