矩阵的稀释和特性

IF 0.8 Q2 MATHEMATICS
Anju Rani, Yogesh Kapil, Bhavna Garg, Mandeep Singh
{"title":"矩阵的稀释和特性","authors":"Anju Rani,&nbsp;Yogesh Kapil,&nbsp;Bhavna Garg,&nbsp;Mandeep Singh","doi":"10.1007/s43036-024-00360-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>A</i>, <i>B</i> be any two positive definite <span>\\(n\\times n\\)</span> matrices and <i>Y</i> be any <span>\\(n\\times n\\)</span> matrix. The matrices <span>\\(M_Y(A,B)=\\left[ \\begin{array}{cc} A &amp;{} A^{\\frac{1}{2}}YB^{\\frac{1}{2}} \\\\ B^{\\frac{1}{2}}Y^{\\star }A^{\\frac{1}{2}} &amp;{} B \\end{array}\\right] \\)</span> for <i>Y</i> to be contractive, expansive or unitary matrix, are in fact arising from matrix/operator means. We aim to establish the signatures of the eigenvalues of the sum of two matrices of the type <span>\\(M_Y(A,B).\\)</span> We characterise any <span>\\(n\\times n\\)</span> matrix <i>A</i> through its dilations given by <span>\\({\\mathcal {P}}_3(A)=\\begin{bmatrix} O &amp;{} A &amp;{} A^2\\\\ A^* &amp;{} O &amp;{} A\\\\ {A^*}^2 &amp;{} A^* &amp;{} O \\end{bmatrix}\\)</span> and <span>\\({\\mathcal {M}}_3(A)=\\begin{bmatrix} I &amp;{} A &amp;{} A^2\\\\ A^* &amp;{} I &amp;{} A\\\\ {A^*}^2 &amp;{} A^* &amp;{} I \\end{bmatrix},\\)</span> by means of inertia of dilations.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dilations and characterisations of matrices\",\"authors\":\"Anju Rani,&nbsp;Yogesh Kapil,&nbsp;Bhavna Garg,&nbsp;Mandeep Singh\",\"doi\":\"10.1007/s43036-024-00360-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>A</i>, <i>B</i> be any two positive definite <span>\\\\(n\\\\times n\\\\)</span> matrices and <i>Y</i> be any <span>\\\\(n\\\\times n\\\\)</span> matrix. The matrices <span>\\\\(M_Y(A,B)=\\\\left[ \\\\begin{array}{cc} A &amp;{} A^{\\\\frac{1}{2}}YB^{\\\\frac{1}{2}} \\\\\\\\ B^{\\\\frac{1}{2}}Y^{\\\\star }A^{\\\\frac{1}{2}} &amp;{} B \\\\end{array}\\\\right] \\\\)</span> for <i>Y</i> to be contractive, expansive or unitary matrix, are in fact arising from matrix/operator means. We aim to establish the signatures of the eigenvalues of the sum of two matrices of the type <span>\\\\(M_Y(A,B).\\\\)</span> We characterise any <span>\\\\(n\\\\times n\\\\)</span> matrix <i>A</i> through its dilations given by <span>\\\\({\\\\mathcal {P}}_3(A)=\\\\begin{bmatrix} O &amp;{} A &amp;{} A^2\\\\\\\\ A^* &amp;{} O &amp;{} A\\\\\\\\ {A^*}^2 &amp;{} A^* &amp;{} O \\\\end{bmatrix}\\\\)</span> and <span>\\\\({\\\\mathcal {M}}_3(A)=\\\\begin{bmatrix} I &amp;{} A &amp;{} A^2\\\\\\\\ A^* &amp;{} I &amp;{} A\\\\\\\\ {A^*}^2 &amp;{} A^* &amp;{} I \\\\end{bmatrix},\\\\)</span> by means of inertia of dilations.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 3\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00360-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00360-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 A, B 是任意两个正定矩阵,Y 是任意一个矩阵。矩阵 \(M_Y(A,B)=\left[ \begin{array}{cc}A &{}A^{\frac{1}{2}}YB^{\frac{1}{2}}\\ B^{\frac{1}{2}}Y^{\star }A^{\frac{1}{2}} &{} B (end{array}\right] )。\)为 Y 的收缩矩阵、扩张矩阵或单元矩阵,实际上都是由矩阵/运算符手段产生的。我们的目标是建立 \(M_Y(A,B).\) 类型的两个矩阵之和的特征值的特征。我们通过 \({\mathcal {P}}_3(A)=\begin{bmatrix} 给出的扩张来描述任何 \(n\times n\) 矩阵 A。O &{}A &{}A^2\ A^* &{}O &{}A\ {A^*}^2 &{}A^* &{}O \end{bmatrix}\) 和 ( {\mathcal {M}}_3(A)=\begin{bmatrix}I &{}A &{}A^2\ A^* &{} I &{}A\ {A^*}^2 &{}A^* &{} I end{bmatrix},\) by means of inertia of dilations.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dilations and characterisations of matrices

Let AB be any two positive definite \(n\times n\) matrices and Y be any \(n\times n\) matrix. The matrices \(M_Y(A,B)=\left[ \begin{array}{cc} A &{} A^{\frac{1}{2}}YB^{\frac{1}{2}} \\ B^{\frac{1}{2}}Y^{\star }A^{\frac{1}{2}} &{} B \end{array}\right] \) for Y to be contractive, expansive or unitary matrix, are in fact arising from matrix/operator means. We aim to establish the signatures of the eigenvalues of the sum of two matrices of the type \(M_Y(A,B).\) We characterise any \(n\times n\) matrix A through its dilations given by \({\mathcal {P}}_3(A)=\begin{bmatrix} O &{} A &{} A^2\\ A^* &{} O &{} A\\ {A^*}^2 &{} A^* &{} O \end{bmatrix}\) and \({\mathcal {M}}_3(A)=\begin{bmatrix} I &{} A &{} A^2\\ A^* &{} I &{} A\\ {A^*}^2 &{} A^* &{} I \end{bmatrix},\) by means of inertia of dilations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信