V. V. Grechnev, V. I. Kiselev, A. M. Uralov, N. S. Meshalkina, K. A. Firoz, A. L. Lysenko
{"title":"造成 GLE71 的 2012 年 5 月 17 日太阳活动之谜。I. CME 的发展和爆发激发的扰动的作用","authors":"V. V. Grechnev, V. I. Kiselev, A. M. Uralov, N. S. Meshalkina, K. A. Firoz, A. L. Lysenko","doi":"10.1007/s11207-024-02373-0","DOIUrl":null,"url":null,"abstract":"<div><p>The SOL2012-05-17 event is remarkable in that it caused one of two ground-level enhancements (GLE71) in Solar Cycle 24. Despite the efforts spent studying this solar event, some aspects of it remain unclear. This relates to the development of a coronal mass ejection (CME), the history of the shock wave, and the flare. Our measurements reveal the following chain of phenomena. Two successive eruptions occurred within a few minutes. The rate of change of the reconnected magnetic flux shows a series of increases corresponding to the acceleration or deceleration of the erupting structures. The temporal profile of the magnetic-flux change rate is similar to the hard X-ray burst. Each eruption excited a disturbance that, propagating outward, accelerated all structures above it. This led to complex kinematic characteristics of the erupting structures that eventually formed a self-similarly expanding CME. The two disturbances became piston shocks and merged into a single, stronger shock. There are indications of transformation of the piston shock into a bow shock, but this occurs at distances exceeding ten solar radii. Components of the described picture were observed in a number of events and can serve as a guide for studies of eruptive flares.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mysteries of the 17 May 2012 Solar Event Responsible for GLE71. I. CME Development and the Role of Disturbances Excited by Eruptions\",\"authors\":\"V. V. Grechnev, V. I. Kiselev, A. M. Uralov, N. S. Meshalkina, K. A. Firoz, A. L. Lysenko\",\"doi\":\"10.1007/s11207-024-02373-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The SOL2012-05-17 event is remarkable in that it caused one of two ground-level enhancements (GLE71) in Solar Cycle 24. Despite the efforts spent studying this solar event, some aspects of it remain unclear. This relates to the development of a coronal mass ejection (CME), the history of the shock wave, and the flare. Our measurements reveal the following chain of phenomena. Two successive eruptions occurred within a few minutes. The rate of change of the reconnected magnetic flux shows a series of increases corresponding to the acceleration or deceleration of the erupting structures. The temporal profile of the magnetic-flux change rate is similar to the hard X-ray burst. Each eruption excited a disturbance that, propagating outward, accelerated all structures above it. This led to complex kinematic characteristics of the erupting structures that eventually formed a self-similarly expanding CME. The two disturbances became piston shocks and merged into a single, stronger shock. There are indications of transformation of the piston shock into a bow shock, but this occurs at distances exceeding ten solar radii. Components of the described picture were observed in a number of events and can serve as a guide for studies of eruptive flares.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"299 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02373-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02373-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
SOL2012-05-17 太阳活动是太阳活动周期 24 中两次地面增强(GLE71)中的一次。尽管对这一太阳活动进行了大量研究,但它的某些方面仍不清楚。这与日冕物质抛射(CME)的发展、冲击波的历史和耀斑有关。我们的测量结果揭示了以下一系列现象。几分钟内连续发生了两次爆发。重新连接的磁通量的变化率显示出一系列与爆发结构的加速或减速相对应的增长。磁通量变化率的时间曲线与硬 X 射线爆发相似。每次爆发都会激发一个扰动,该扰动向外传播,加速了其上方的所有结构。这导致喷发结构具有复杂的运动特性,最终形成一个自相似膨胀的 CME。这两个扰动变成了活塞冲击,并合并成一个更强的冲击。有迹象表明活塞冲击转变为弓形冲击,但这发生在距离超过 10 个太阳半径的地方。在一些事件中观测到了所述图景的组成部分,可作为爆发耀斑研究的指南。
Mysteries of the 17 May 2012 Solar Event Responsible for GLE71. I. CME Development and the Role of Disturbances Excited by Eruptions
The SOL2012-05-17 event is remarkable in that it caused one of two ground-level enhancements (GLE71) in Solar Cycle 24. Despite the efforts spent studying this solar event, some aspects of it remain unclear. This relates to the development of a coronal mass ejection (CME), the history of the shock wave, and the flare. Our measurements reveal the following chain of phenomena. Two successive eruptions occurred within a few minutes. The rate of change of the reconnected magnetic flux shows a series of increases corresponding to the acceleration or deceleration of the erupting structures. The temporal profile of the magnetic-flux change rate is similar to the hard X-ray burst. Each eruption excited a disturbance that, propagating outward, accelerated all structures above it. This led to complex kinematic characteristics of the erupting structures that eventually formed a self-similarly expanding CME. The two disturbances became piston shocks and merged into a single, stronger shock. There are indications of transformation of the piston shock into a bow shock, but this occurs at distances exceeding ten solar radii. Components of the described picture were observed in a number of events and can serve as a guide for studies of eruptive flares.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.