Jiakun Han
(, ), Chao Dong
(, ), Jian Zhang
(, ), Gang Chen
(, )
{"title":"具有流固耦合作用的双柔性襟翼的非线性流动控制机制","authors":"Jiakun Han \n (, ), Chao Dong \n (, ), Jian Zhang \n (, ), Gang Chen \n (, )","doi":"10.1007/s10409-024-24078-x","DOIUrl":null,"url":null,"abstract":"<div><p>The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics, and it is also an important source of the innovation for novel aircraft. In this study, a new way of nonlinear flow control by interaction between two flexible flaps is proposed, and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method (IB-LB-FEM). The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed. It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction (FSI). It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps. The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap. Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex, effectively suppressing the flow separation on the airfoil’s upper surface. The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control. The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear flow control mechanism of two flexible flaps with fluid-structure interaction\",\"authors\":\"Jiakun Han \\n (, ), Chao Dong \\n (, ), Jian Zhang \\n (, ), Gang Chen \\n (, )\",\"doi\":\"10.1007/s10409-024-24078-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics, and it is also an important source of the innovation for novel aircraft. In this study, a new way of nonlinear flow control by interaction between two flexible flaps is proposed, and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method (IB-LB-FEM). The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed. It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction (FSI). It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps. The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap. Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex, effectively suppressing the flow separation on the airfoil’s upper surface. The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control. The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24078-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24078-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Nonlinear flow control mechanism of two flexible flaps with fluid-structure interaction
The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics, and it is also an important source of the innovation for novel aircraft. In this study, a new way of nonlinear flow control by interaction between two flexible flaps is proposed, and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method (IB-LB-FEM). The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed. It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction (FSI). It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps. The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap. Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex, effectively suppressing the flow separation on the airfoil’s upper surface. The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control. The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics