{"title":"无惯性球形颗粒在湍流通道流中以流动结构为主的区域中的排列:形状效应","authors":"Zhiwen Cui \n (, ), Lihao Zhao \n (, )","doi":"10.1007/s10409-024-23623-x","DOIUrl":null,"url":null,"abstract":"<div><p>The alignment of elongated fibers and thin disks is known to be significantly influenced by the presence of fluid coherent structures in near-wall turbulence (Cui et al. 2021). However, this earlier study is confined to the spheroids with infinitely large or small aspect ratio, and the shape effect of finite aspect ratio on the alignment is not considered. The current study investigates the shape-dependent alignment of inertialess spheroids in structure-dominated regions of channel flow. With utilizing an ensemble-averaged approach for identifying the structure-dominated regions, we analyze the eigensystem of the linear term matrix in the Jeffery equation, which is governed by both particle shape and local fluid velocity gradients. In contrast to earlier conventional analysis based on local vorticity and strain rate, our findings demonstrate that the eigensystem of the Jeffery equation offers a convenient, effective, and universal framework for predicting the alignment behavior of inertialess spheroids in turbulent flows. By leveraging the eigensystem of the Jeffery equation, we uncover a diverse effect of fluid coherent structures on spheroid alignment with different particle shapes. Furthermore, we provide explanations for both shape-independent alignments observed in vortical-core regions and shape-dependent alignments around near-wall streamwise vortices.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"40 8","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alignment of inertialess spheroidal particles in flow-structure-dominated regions of turbulent channel flow: shape effect\",\"authors\":\"Zhiwen Cui \\n (, ), Lihao Zhao \\n (, )\",\"doi\":\"10.1007/s10409-024-23623-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The alignment of elongated fibers and thin disks is known to be significantly influenced by the presence of fluid coherent structures in near-wall turbulence (Cui et al. 2021). However, this earlier study is confined to the spheroids with infinitely large or small aspect ratio, and the shape effect of finite aspect ratio on the alignment is not considered. The current study investigates the shape-dependent alignment of inertialess spheroids in structure-dominated regions of channel flow. With utilizing an ensemble-averaged approach for identifying the structure-dominated regions, we analyze the eigensystem of the linear term matrix in the Jeffery equation, which is governed by both particle shape and local fluid velocity gradients. In contrast to earlier conventional analysis based on local vorticity and strain rate, our findings demonstrate that the eigensystem of the Jeffery equation offers a convenient, effective, and universal framework for predicting the alignment behavior of inertialess spheroids in turbulent flows. By leveraging the eigensystem of the Jeffery equation, we uncover a diverse effect of fluid coherent structures on spheroid alignment with different particle shapes. Furthermore, we provide explanations for both shape-independent alignments observed in vortical-core regions and shape-dependent alignments around near-wall streamwise vortices.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"40 8\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-23623-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-23623-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Alignment of inertialess spheroidal particles in flow-structure-dominated regions of turbulent channel flow: shape effect
The alignment of elongated fibers and thin disks is known to be significantly influenced by the presence of fluid coherent structures in near-wall turbulence (Cui et al. 2021). However, this earlier study is confined to the spheroids with infinitely large or small aspect ratio, and the shape effect of finite aspect ratio on the alignment is not considered. The current study investigates the shape-dependent alignment of inertialess spheroids in structure-dominated regions of channel flow. With utilizing an ensemble-averaged approach for identifying the structure-dominated regions, we analyze the eigensystem of the linear term matrix in the Jeffery equation, which is governed by both particle shape and local fluid velocity gradients. In contrast to earlier conventional analysis based on local vorticity and strain rate, our findings demonstrate that the eigensystem of the Jeffery equation offers a convenient, effective, and universal framework for predicting the alignment behavior of inertialess spheroids in turbulent flows. By leveraging the eigensystem of the Jeffery equation, we uncover a diverse effect of fluid coherent structures on spheroid alignment with different particle shapes. Furthermore, we provide explanations for both shape-independent alignments observed in vortical-core regions and shape-dependent alignments around near-wall streamwise vortices.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics