关于(p,r,s)求和布洛赫映射和拉普斯特规范

IF 0.8 Q2 MATHEMATICS
A. Belacel, A. Bougoutaia, A. Jiménez-Vargas
{"title":"关于(p,r,s)求和布洛赫映射和拉普斯特规范","authors":"A. Belacel,&nbsp;A. Bougoutaia,&nbsp;A. Jiménez-Vargas","doi":"10.1007/s43036-024-00376-z","DOIUrl":null,"url":null,"abstract":"<div><p>The theory of (<i>p</i>, <i>r</i>, <i>s</i>)-summing and (<i>p</i>, <i>r</i>, <i>s</i>)-nuclear linear operators on Banach spaces was developed by Pietsch in his book on operator ideals (Pietsch in Operator ideals, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1980, Chapters 17 and 18) Due to recent advances in the theory of ideals of Bloch maps, we extend these concepts to Bloch maps from the complex open unit disc <span>\\(\\mathbb {D}\\)</span> into a complex Banach space <i>X</i>. Variants for (<i>r</i>, <i>s</i>)-dominated Bloch maps of classical Pietsch’s domination and Kwapień’s factorization theorems of (<i>r</i>, <i>s</i>)-dominated linear operators are presented. We define analogues of Lapresté’s tensor norms on the space of <i>X</i>-valued Bloch molecules on <span>\\(\\mathbb {D}\\)</span> to address the duality of the spaces of <span>\\((p^*,r,s)\\)</span>-summing Bloch maps from <span>\\(\\mathbb {D}\\)</span> into <span>\\(X^*\\)</span>. The class of (<i>p</i>, <i>r</i>, <i>s</i>)-nuclear Bloch maps is introduced and analysed to give examples of (<i>p</i>, <i>r</i>, <i>s</i>)-summing Bloch maps.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On (p, r, s)-summing Bloch maps and Lapresté norms\",\"authors\":\"A. Belacel,&nbsp;A. Bougoutaia,&nbsp;A. Jiménez-Vargas\",\"doi\":\"10.1007/s43036-024-00376-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The theory of (<i>p</i>, <i>r</i>, <i>s</i>)-summing and (<i>p</i>, <i>r</i>, <i>s</i>)-nuclear linear operators on Banach spaces was developed by Pietsch in his book on operator ideals (Pietsch in Operator ideals, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1980, Chapters 17 and 18) Due to recent advances in the theory of ideals of Bloch maps, we extend these concepts to Bloch maps from the complex open unit disc <span>\\\\(\\\\mathbb {D}\\\\)</span> into a complex Banach space <i>X</i>. Variants for (<i>r</i>, <i>s</i>)-dominated Bloch maps of classical Pietsch’s domination and Kwapień’s factorization theorems of (<i>r</i>, <i>s</i>)-dominated linear operators are presented. We define analogues of Lapresté’s tensor norms on the space of <i>X</i>-valued Bloch molecules on <span>\\\\(\\\\mathbb {D}\\\\)</span> to address the duality of the spaces of <span>\\\\((p^*,r,s)\\\\)</span>-summing Bloch maps from <span>\\\\(\\\\mathbb {D}\\\\)</span> into <span>\\\\(X^*\\\\)</span>. The class of (<i>p</i>, <i>r</i>, <i>s</i>)-nuclear Bloch maps is introduced and analysed to give examples of (<i>p</i>, <i>r</i>, <i>s</i>)-summing Bloch maps.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00376-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00376-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

关于巴拿赫空间上的(p, r, s)相加和(p, r, s)核线性算子的理论是由皮特希(Pietsch)在他的算子理想(Pietsch in Operator ideals, North-Holland Mathematical Library, North-Holland Publishing Co. Amsterdam, 1980, Chapters 17 and 18)一书中发展起来的、由于布洛赫映射理想理论的最新进展,我们将这些概念扩展到从复开单位圆盘(\mathbb {D}\)到复巴纳赫空间 X 的布洛赫映射。我们定义了 \(\mathbb {D}\) 上 X 值布洛赫分子空间的拉普拉斯泰(Lapresté)张量规范的类似物,以解决从 \(\mathbb {D}\) 到 \(X^*\) 的 \((p^*,r,s)\)-相加布洛赫映射空间的对偶性问题。引入并分析了(p, r, s)-核布洛赫映射类,给出了(p, r, s)-求和布洛赫映射的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On (p, r, s)-summing Bloch maps and Lapresté norms

The theory of (prs)-summing and (prs)-nuclear linear operators on Banach spaces was developed by Pietsch in his book on operator ideals (Pietsch in Operator ideals, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1980, Chapters 17 and 18) Due to recent advances in the theory of ideals of Bloch maps, we extend these concepts to Bloch maps from the complex open unit disc \(\mathbb {D}\) into a complex Banach space X. Variants for (rs)-dominated Bloch maps of classical Pietsch’s domination and Kwapień’s factorization theorems of (rs)-dominated linear operators are presented. We define analogues of Lapresté’s tensor norms on the space of X-valued Bloch molecules on \(\mathbb {D}\) to address the duality of the spaces of \((p^*,r,s)\)-summing Bloch maps from \(\mathbb {D}\) into \(X^*\). The class of (prs)-nuclear Bloch maps is introduced and analysed to give examples of (prs)-summing Bloch maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信