{"title":"面向过程感知寻源的动态事件触发式综合任务和运动规划","authors":"Yingke Li, Mengxue Hou, Enlu Zhou, Fumin Zhang","doi":"10.1007/s10514-024-10177-1","DOIUrl":null,"url":null,"abstract":"<div><p>The process-aware source seeking (PASS) problem in flow fields aims to find an informative trajectory to reach an unknown source location while taking the energy consumption in the flow fields into consideration. Taking advantage of the dynamic flow field partition technique, this paper formulates this problem as a task and motion planning (TAMP) problem and proposes a bi-level hierarchical planning framework to decouple the planning of inter-region transition and inner-region trajectory by introducing inter-region junctions. An integrated strategy is developed to enable efficient upper-level planning by investigating the optimal solution of the lower-level planner. In order to leverage the information acquisition and computational burden, a dynamic event-triggered mechanism is introduced to enable asynchronized estimation, region partitioning and re-plans. The proposed algorithm provides guaranteed convergence of the trajectory, and achieves automatic trade-offs of both exploration-exploitation and accuracy-efficiency. Simulations in a highly complicated and realistic ocean surface flow field validate the merits of the proposed algorithm, which demonstrates a significant reduction in computational burden without compromising planning optimality.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 8","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10177-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamic event-triggered integrated task and motion planning for process-aware source seeking\",\"authors\":\"Yingke Li, Mengxue Hou, Enlu Zhou, Fumin Zhang\",\"doi\":\"10.1007/s10514-024-10177-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The process-aware source seeking (PASS) problem in flow fields aims to find an informative trajectory to reach an unknown source location while taking the energy consumption in the flow fields into consideration. Taking advantage of the dynamic flow field partition technique, this paper formulates this problem as a task and motion planning (TAMP) problem and proposes a bi-level hierarchical planning framework to decouple the planning of inter-region transition and inner-region trajectory by introducing inter-region junctions. An integrated strategy is developed to enable efficient upper-level planning by investigating the optimal solution of the lower-level planner. In order to leverage the information acquisition and computational burden, a dynamic event-triggered mechanism is introduced to enable asynchronized estimation, region partitioning and re-plans. The proposed algorithm provides guaranteed convergence of the trajectory, and achieves automatic trade-offs of both exploration-exploitation and accuracy-efficiency. Simulations in a highly complicated and realistic ocean surface flow field validate the merits of the proposed algorithm, which demonstrates a significant reduction in computational burden without compromising planning optimality.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"48 8\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-024-10177-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-024-10177-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-024-10177-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dynamic event-triggered integrated task and motion planning for process-aware source seeking
The process-aware source seeking (PASS) problem in flow fields aims to find an informative trajectory to reach an unknown source location while taking the energy consumption in the flow fields into consideration. Taking advantage of the dynamic flow field partition technique, this paper formulates this problem as a task and motion planning (TAMP) problem and proposes a bi-level hierarchical planning framework to decouple the planning of inter-region transition and inner-region trajectory by introducing inter-region junctions. An integrated strategy is developed to enable efficient upper-level planning by investigating the optimal solution of the lower-level planner. In order to leverage the information acquisition and computational burden, a dynamic event-triggered mechanism is introduced to enable asynchronized estimation, region partitioning and re-plans. The proposed algorithm provides guaranteed convergence of the trajectory, and achieves automatic trade-offs of both exploration-exploitation and accuracy-efficiency. Simulations in a highly complicated and realistic ocean surface flow field validate the merits of the proposed algorithm, which demonstrates a significant reduction in computational burden without compromising planning optimality.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.