{"title":"花岗岩水分移动行为的实验研究","authors":"Amin Nazerigivi, Bahman Ghiassi, Amélia Dionísio, Graça Vasconcelos","doi":"10.1007/s10064-024-03935-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study comprehensively investigates the hygric performance of two commonly used types of granite in masonry, each characterized by distinct porosity levels. A series of experimental tests, including capillary absorption, one-dimensional drying, cup methods, vacuum saturation, sorption/desorption isotherms, mercury intrusion porosimetry, and ultrasonic pulse velocity, was conducted in different directions and by using both pure water and NaCl solutions. The results highlight pronounced anisotropy in the granite’s hygric response, with significant directional differences in liquid and vapor moisture movement, as well as ultrasonic wave propagation. Granite with lower porosity and a finer pore structure exhibited hysteresis effects and more pronounced hygroscopic behavior, while granite with higher porosity showed greater capillary activity. The presence of salt crystals within the pore network significantly influences vapor and liquid transport properties, porosity, and moisture storage capacity. The gradual formation of sodium chloride crystals on drying surfaces noticeably altered drying kinetics, influenced by salt concentration and pore characteristics. These findings provide valuable insights into the hygric properties of granite, essential for understanding its durability and informing moisture transfer numerical models.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10064-024-03935-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on the moisture movement behavior of granites\",\"authors\":\"Amin Nazerigivi, Bahman Ghiassi, Amélia Dionísio, Graça Vasconcelos\",\"doi\":\"10.1007/s10064-024-03935-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study comprehensively investigates the hygric performance of two commonly used types of granite in masonry, each characterized by distinct porosity levels. A series of experimental tests, including capillary absorption, one-dimensional drying, cup methods, vacuum saturation, sorption/desorption isotherms, mercury intrusion porosimetry, and ultrasonic pulse velocity, was conducted in different directions and by using both pure water and NaCl solutions. The results highlight pronounced anisotropy in the granite’s hygric response, with significant directional differences in liquid and vapor moisture movement, as well as ultrasonic wave propagation. Granite with lower porosity and a finer pore structure exhibited hysteresis effects and more pronounced hygroscopic behavior, while granite with higher porosity showed greater capillary activity. The presence of salt crystals within the pore network significantly influences vapor and liquid transport properties, porosity, and moisture storage capacity. The gradual formation of sodium chloride crystals on drying surfaces noticeably altered drying kinetics, influenced by salt concentration and pore characteristics. These findings provide valuable insights into the hygric properties of granite, essential for understanding its durability and informing moisture transfer numerical models.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10064-024-03935-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03935-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03935-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Experimental investigation on the moisture movement behavior of granites
This study comprehensively investigates the hygric performance of two commonly used types of granite in masonry, each characterized by distinct porosity levels. A series of experimental tests, including capillary absorption, one-dimensional drying, cup methods, vacuum saturation, sorption/desorption isotherms, mercury intrusion porosimetry, and ultrasonic pulse velocity, was conducted in different directions and by using both pure water and NaCl solutions. The results highlight pronounced anisotropy in the granite’s hygric response, with significant directional differences in liquid and vapor moisture movement, as well as ultrasonic wave propagation. Granite with lower porosity and a finer pore structure exhibited hysteresis effects and more pronounced hygroscopic behavior, while granite with higher porosity showed greater capillary activity. The presence of salt crystals within the pore network significantly influences vapor and liquid transport properties, porosity, and moisture storage capacity. The gradual formation of sodium chloride crystals on drying surfaces noticeably altered drying kinetics, influenced by salt concentration and pore characteristics. These findings provide valuable insights into the hygric properties of granite, essential for understanding its durability and informing moisture transfer numerical models.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.