\(textbf{R}^n\) 中固定理想磁流体力学方程的利乌维尔式定理

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Lv Cai, Ning-An Lai, Anthony Suen, Manwai Yuen
{"title":"\\(textbf{R}^n\\) 中固定理想磁流体力学方程的利乌维尔式定理","authors":"Lv Cai,&nbsp;Ning-An Lai,&nbsp;Anthony Suen,&nbsp;Manwai Yuen","doi":"10.1007/s00021-024-00902-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish Liouville-type theorems for the stationary ideal compressible magnetohydrodynamics system in <span>\\(\\textbf{R}^n\\)</span> with <span>\\(n\\in \\{1, 2, 3\\}\\)</span>. We address various cases when the finite energy condition is in force and the stationary density function <span>\\(\\rho \\)</span> satisfies <span>\\(\\displaystyle \\lim _{|x|\\rightarrow \\infty }\\rho (x)=\\rho _\\infty \\ge 0\\)</span>. Our proof relies heavily on the good structure of the nonlinear magnetic force term and the usage of well-chosen smooth cut-off test functions.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville-Type Theorems for the Stationary Ideal Magnetohydrodynamics Equations in \\\\(\\\\textbf{R}^n\\\\)\",\"authors\":\"Lv Cai,&nbsp;Ning-An Lai,&nbsp;Anthony Suen,&nbsp;Manwai Yuen\",\"doi\":\"10.1007/s00021-024-00902-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we establish Liouville-type theorems for the stationary ideal compressible magnetohydrodynamics system in <span>\\\\(\\\\textbf{R}^n\\\\)</span> with <span>\\\\(n\\\\in \\\\{1, 2, 3\\\\}\\\\)</span>. We address various cases when the finite energy condition is in force and the stationary density function <span>\\\\(\\\\rho \\\\)</span> satisfies <span>\\\\(\\\\displaystyle \\\\lim _{|x|\\\\rightarrow \\\\infty }\\\\rho (x)=\\\\rho _\\\\infty \\\\ge 0\\\\)</span>. Our proof relies heavily on the good structure of the nonlinear magnetic force term and the usage of well-chosen smooth cut-off test functions.\\n</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00902-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00902-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了在 \(textbf{R}^n\) 中具有 \(n\in \{1, 2, 3\}\) 的静态理想可压缩磁流体动力学系统的 Liouville 型定理。我们讨论了有限能量条件生效且静态密度函数 \(\rho \) 满足 \(\displaystyle \lim _{|x|\rightarrow \infty }\rho (x)=\rho _\infty \ge 0\) 的各种情况。我们的证明在很大程度上依赖于非线性磁力项的良好结构和精心选择的平滑截止测试函数的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liouville-Type Theorems for the Stationary Ideal Magnetohydrodynamics Equations in \(\textbf{R}^n\)

In this paper, we establish Liouville-type theorems for the stationary ideal compressible magnetohydrodynamics system in \(\textbf{R}^n\) with \(n\in \{1, 2, 3\}\). We address various cases when the finite energy condition is in force and the stationary density function \(\rho \) satisfies \(\displaystyle \lim _{|x|\rightarrow \infty }\rho (x)=\rho _\infty \ge 0\). Our proof relies heavily on the good structure of the nonlinear magnetic force term and the usage of well-chosen smooth cut-off test functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信