{"title":"圆上随机双曲正弦-戈登方程的指数对偶性","authors":"Kihoon Seong","doi":"10.1007/s10955-024-03347-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we show that the Gibbs measure of the stochastic hyperbolic sine-Gordon equation on the circle is the unique invariant measure for the Markov process. Moreover, the Markov transition probabilities converge exponentially fast to the unique invariant measure in a type of 1-Wasserstein distance. The main difficulty comes from the fact that the hyperbolic dynamics does not satisfy the strong Feller property even if sufficiently many directions in a phase space are forced by the space-time white noise forcing. We instead establish that solutions give rise to a Markov process whose transition semigroup satisfies the asymptotic strong Feller property and convergence to equilibrium in a type of Wasserstein distance.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 10","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Ergodicity for the Stochastic Hyperbolic Sine-Gordon Equation on the Circle\",\"authors\":\"Kihoon Seong\",\"doi\":\"10.1007/s10955-024-03347-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we show that the Gibbs measure of the stochastic hyperbolic sine-Gordon equation on the circle is the unique invariant measure for the Markov process. Moreover, the Markov transition probabilities converge exponentially fast to the unique invariant measure in a type of 1-Wasserstein distance. The main difficulty comes from the fact that the hyperbolic dynamics does not satisfy the strong Feller property even if sufficiently many directions in a phase space are forced by the space-time white noise forcing. We instead establish that solutions give rise to a Markov process whose transition semigroup satisfies the asymptotic strong Feller property and convergence to equilibrium in a type of Wasserstein distance.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"191 10\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-024-03347-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03347-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Exponential Ergodicity for the Stochastic Hyperbolic Sine-Gordon Equation on the Circle
In this paper, we show that the Gibbs measure of the stochastic hyperbolic sine-Gordon equation on the circle is the unique invariant measure for the Markov process. Moreover, the Markov transition probabilities converge exponentially fast to the unique invariant measure in a type of 1-Wasserstein distance. The main difficulty comes from the fact that the hyperbolic dynamics does not satisfy the strong Feller property even if sufficiently many directions in a phase space are forced by the space-time white noise forcing. We instead establish that solutions give rise to a Markov process whose transition semigroup satisfies the asymptotic strong Feller property and convergence to equilibrium in a type of Wasserstein distance.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.