利用深度学习方法绘制考虑滑坡类型的滑坡易发性地图

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Yue Wang, Chao Zhou, Ying Cao, Sansar Raj Meena, Yang Feng, Yang Wang
{"title":"利用深度学习方法绘制考虑滑坡类型的滑坡易发性地图","authors":"Yue Wang,&nbsp;Chao Zhou,&nbsp;Ying Cao,&nbsp;Sansar Raj Meena,&nbsp;Yang Feng,&nbsp;Yang Wang","doi":"10.1007/s10064-024-03889-2","DOIUrl":null,"url":null,"abstract":"<div><p>Landslide susceptibility evaluation is pivotal for mitigating landslide risk and enhancing early warning systems. Current practices in developing Landslide Susceptibility Mapping (LSM) often overlook the diverse mechanisms of landslides, and traditional machine learning (ML) models lack the capability for autonomous feature learning in landslide contexts. This study proposes a methodology that precedes the application of deep learning algorithms for LSM by classifying landslides and selecting relevant factors based on their deformation mechanisms. In the Zigui-Badong section of the Three Gorges Reservoir area (TGRA), landslides are classified into rock landslides (RL) and soil landslides (SL) based on the geological conditions and historical landslide inventory. A comprehensive evaluation index system, comprising thirteen factors is established. To identify the most pertinent factors for each type of landslide, these factors are ranked according to their contribution to landslide occurrence. For susceptibility assessment, this study introduces a Convolutional Neural Network (CNN) model and benchmarks its performance to traditional ML models including Classification and Regression Trees (CART) and Multilayer Perceptrons (MLP). The efficacy of these models is evaluated using the Receiver Operating Characteristic (ROC) curve and various statistical analysis methods. The findings indicate that LSMs that consider different types of landslides yield more accurate and realistic outcomes. The CNN model outperformes its counterparts, with MLP being the second most effective and CART the least effective. Overall, this study demonstrates the superiority of an LSM approach that accounts for landslide diversity over traditional, monolithic methods.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing deep learning approach to develop landslide susceptibility mapping considering landslide types\",\"authors\":\"Yue Wang,&nbsp;Chao Zhou,&nbsp;Ying Cao,&nbsp;Sansar Raj Meena,&nbsp;Yang Feng,&nbsp;Yang Wang\",\"doi\":\"10.1007/s10064-024-03889-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Landslide susceptibility evaluation is pivotal for mitigating landslide risk and enhancing early warning systems. Current practices in developing Landslide Susceptibility Mapping (LSM) often overlook the diverse mechanisms of landslides, and traditional machine learning (ML) models lack the capability for autonomous feature learning in landslide contexts. This study proposes a methodology that precedes the application of deep learning algorithms for LSM by classifying landslides and selecting relevant factors based on their deformation mechanisms. In the Zigui-Badong section of the Three Gorges Reservoir area (TGRA), landslides are classified into rock landslides (RL) and soil landslides (SL) based on the geological conditions and historical landslide inventory. A comprehensive evaluation index system, comprising thirteen factors is established. To identify the most pertinent factors for each type of landslide, these factors are ranked according to their contribution to landslide occurrence. For susceptibility assessment, this study introduces a Convolutional Neural Network (CNN) model and benchmarks its performance to traditional ML models including Classification and Regression Trees (CART) and Multilayer Perceptrons (MLP). The efficacy of these models is evaluated using the Receiver Operating Characteristic (ROC) curve and various statistical analysis methods. The findings indicate that LSMs that consider different types of landslides yield more accurate and realistic outcomes. The CNN model outperformes its counterparts, with MLP being the second most effective and CART the least effective. Overall, this study demonstrates the superiority of an LSM approach that accounts for landslide diversity over traditional, monolithic methods.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03889-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03889-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

滑坡易感性评估对于降低滑坡风险和加强预警系统至关重要。目前开发滑坡易感性绘图(LSM)的做法往往忽视了滑坡的各种机制,传统的机器学习(ML)模型缺乏在滑坡环境中自主学习特征的能力。本研究提出了一种方法论,通过对滑坡进行分类,并根据其变形机制选择相关因素,从而在将深度学习算法应用于滑坡易感性测绘(LSM)之前先行一步。在三峡库区(TGRA)秭归-巴东段,根据地质条件和历史滑坡清单,将滑坡分为岩石滑坡(RL)和土壤滑坡(SL)。建立了由 13 个因素组成的综合评价指标体系。为了确定与每种滑坡类型最相关的因素,根据这些因素对滑坡发生的影响程度进行排序。在易感性评估方面,本研究引入了卷积神经网络(CNN)模型,并将其性能与分类和回归树(CART)以及多层感知器(MLP)等传统 ML 模型进行了比较。这些模型的功效通过接收者操作特征曲线(ROC)和各种统计分析方法进行评估。研究结果表明,考虑到不同类型滑坡的 LSM 能产生更准确、更真实的结果。CNN 模型的效果优于同类模型,MLP 的效果次之,CART 的效果最差。总体而言,本研究证明了考虑滑坡多样性的 LSM 方法优于传统的单一方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Utilizing deep learning approach to develop landslide susceptibility mapping considering landslide types

Utilizing deep learning approach to develop landslide susceptibility mapping considering landslide types

Landslide susceptibility evaluation is pivotal for mitigating landslide risk and enhancing early warning systems. Current practices in developing Landslide Susceptibility Mapping (LSM) often overlook the diverse mechanisms of landslides, and traditional machine learning (ML) models lack the capability for autonomous feature learning in landslide contexts. This study proposes a methodology that precedes the application of deep learning algorithms for LSM by classifying landslides and selecting relevant factors based on their deformation mechanisms. In the Zigui-Badong section of the Three Gorges Reservoir area (TGRA), landslides are classified into rock landslides (RL) and soil landslides (SL) based on the geological conditions and historical landslide inventory. A comprehensive evaluation index system, comprising thirteen factors is established. To identify the most pertinent factors for each type of landslide, these factors are ranked according to their contribution to landslide occurrence. For susceptibility assessment, this study introduces a Convolutional Neural Network (CNN) model and benchmarks its performance to traditional ML models including Classification and Regression Trees (CART) and Multilayer Perceptrons (MLP). The efficacy of these models is evaluated using the Receiver Operating Characteristic (ROC) curve and various statistical analysis methods. The findings indicate that LSMs that consider different types of landslides yield more accurate and realistic outcomes. The CNN model outperformes its counterparts, with MLP being the second most effective and CART the least effective. Overall, this study demonstrates the superiority of an LSM approach that accounts for landslide diversity over traditional, monolithic methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信