广义拉格朗日均值曲率流在余切束中的稳定性

IF 2.4 1区 数学 Q1 MATHEMATICS
Xishen Jin, Jiawei Liu
{"title":"广义拉格朗日均值曲率流在余切束中的稳定性","authors":"Xishen Jin,&nbsp;Jiawei Liu","doi":"10.1007/s40818-024-00185-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the stability of the generalized Lagrangian mean curvature flow of graph case in the cotangent bundle, which is first defined by Smoczyk-Tsui-Wang (Smoczyk et al. J für die reine und angewandte Mathematik 750: 97–121, 2019). By new estimates of derivatives along the flow, we weaken the initial condition and remove the positive curvature condition in Smoczyk et al. (J für die reine und angewandte Mathematik 750: 97–121, 2019). More precisely, we prove that if the graph induced by a closed 1-form is a special Lagrangian submanifold in the cotangent bundle of a Riemannian manifold, then the generalized Lagrangian mean curvature flow is stable near it.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of the Generalized Lagrangian Mean Curvature Flow in Cotangent Bundle\",\"authors\":\"Xishen Jin,&nbsp;Jiawei Liu\",\"doi\":\"10.1007/s40818-024-00185-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the stability of the generalized Lagrangian mean curvature flow of graph case in the cotangent bundle, which is first defined by Smoczyk-Tsui-Wang (Smoczyk et al. J für die reine und angewandte Mathematik 750: 97–121, 2019). By new estimates of derivatives along the flow, we weaken the initial condition and remove the positive curvature condition in Smoczyk et al. (J für die reine und angewandte Mathematik 750: 97–121, 2019). More precisely, we prove that if the graph induced by a closed 1-form is a special Lagrangian submanifold in the cotangent bundle of a Riemannian manifold, then the generalized Lagrangian mean curvature flow is stable near it.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-024-00185-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00185-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了广义拉格朗日平均曲率流在余切束中的稳定性,它是由 Smoczyk-Tsui-Wang (Smoczyk et al. J für die reine und angewandte Mathematik 750: 97-121, 2019) 首次定义的。通过对沿流导数的新估计,我们弱化了 Smoczyk 等人 (J für die reine und angewandte Mathematik 750: 97-121, 2019) 中的初始条件并消除了正曲率条件。更确切地说,我们证明,如果封闭 1-form 所诱导的图是黎曼流形切向束中的特殊拉格朗日子流形,那么广义拉格朗日平均曲率流在其附近是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of the Generalized Lagrangian Mean Curvature Flow in Cotangent Bundle

In this paper, we consider the stability of the generalized Lagrangian mean curvature flow of graph case in the cotangent bundle, which is first defined by Smoczyk-Tsui-Wang (Smoczyk et al. J für die reine und angewandte Mathematik 750: 97–121, 2019). By new estimates of derivatives along the flow, we weaken the initial condition and remove the positive curvature condition in Smoczyk et al. (J für die reine und angewandte Mathematik 750: 97–121, 2019). More precisely, we prove that if the graph induced by a closed 1-form is a special Lagrangian submanifold in the cotangent bundle of a Riemannian manifold, then the generalized Lagrangian mean curvature flow is stable near it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信