凯拉特演化方程分析解的数值验证

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Mostafa M. A. Khater
{"title":"凯拉特演化方程分析解的数值验证","authors":"Mostafa M. A. Khater","doi":"10.1007/s10773-024-05797-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study undertakes a comprehensive analytical and numerical investigation of the nonlinear Kairat model, a significant evolution equation that governs a wide range of physical phenomena, including shallow water waves, plasma physics, and optical fibers. The Kairat model effectively describes the propagation of nonlinear waves in shallow water, capturing the intricate interplay between nonlinearity and dispersion. It exhibits similarities with well-known nonlinear evolution equations such as the Korteweg-de Vries (KdV) and nonlinear Schrödinger (NLS) equations, thereby offering insights into their common underlying dynamics. To achieve the objectives of this research, we employ the modified Khater (MKhat) and unified (UF) methodologies to derive exact solutions for the Kairat model. Furthermore, the trigonometric-quantic-B-spline (TQBS) scheme is utilized as a numerical technique to verify the accuracy of these derived solutions and validate their applicability within the domain of shallow water wave propagation. This investigation yields a collection of innovative and precise analytical solutions, elucidating the complex nonlinear behavior of the Kairat model and its effectiveness in capturing the dynamics of shallow water waves. Moreover, these analytical solutions are corroborated through numerical simulations conducted using the TQBS scheme, ensuring their reliability and practical significance in understanding and predicting shallow water wave phenomena. The significance of this endeavor lies in its contribution to a deeper understanding of the dynamics of the Kairat model and its potential applications in fields such as coastal engineering, oceanography, and related disciplines. The integration of analytical and numerical techniques offers new perspectives and methodologies for exploring nonlinear evolution equations, potentially benefiting researchers in applied mathematics, physics, and engineering. In summary, this comprehensive analytical and numerical investigation provides novel insights, precise solutions, and a robust foundation for further exploration of the physical implications and applications of the Kairat model in the context of shallow water wave propagation.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"63 10","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Validation of Analytical Solutions for the Kairat Evolution Equation\",\"authors\":\"Mostafa M. A. Khater\",\"doi\":\"10.1007/s10773-024-05797-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study undertakes a comprehensive analytical and numerical investigation of the nonlinear Kairat model, a significant evolution equation that governs a wide range of physical phenomena, including shallow water waves, plasma physics, and optical fibers. The Kairat model effectively describes the propagation of nonlinear waves in shallow water, capturing the intricate interplay between nonlinearity and dispersion. It exhibits similarities with well-known nonlinear evolution equations such as the Korteweg-de Vries (KdV) and nonlinear Schrödinger (NLS) equations, thereby offering insights into their common underlying dynamics. To achieve the objectives of this research, we employ the modified Khater (MKhat) and unified (UF) methodologies to derive exact solutions for the Kairat model. Furthermore, the trigonometric-quantic-B-spline (TQBS) scheme is utilized as a numerical technique to verify the accuracy of these derived solutions and validate their applicability within the domain of shallow water wave propagation. This investigation yields a collection of innovative and precise analytical solutions, elucidating the complex nonlinear behavior of the Kairat model and its effectiveness in capturing the dynamics of shallow water waves. Moreover, these analytical solutions are corroborated through numerical simulations conducted using the TQBS scheme, ensuring their reliability and practical significance in understanding and predicting shallow water wave phenomena. The significance of this endeavor lies in its contribution to a deeper understanding of the dynamics of the Kairat model and its potential applications in fields such as coastal engineering, oceanography, and related disciplines. The integration of analytical and numerical techniques offers new perspectives and methodologies for exploring nonlinear evolution equations, potentially benefiting researchers in applied mathematics, physics, and engineering. In summary, this comprehensive analytical and numerical investigation provides novel insights, precise solutions, and a robust foundation for further exploration of the physical implications and applications of the Kairat model in the context of shallow water wave propagation.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"63 10\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-024-05797-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05797-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究对非线性凯拉特模型进行了全面的分析和数值研究。凯拉特模型是一个重要的演化方程,它支配着广泛的物理现象,包括浅水波、等离子体物理和光纤。凯拉特模型有效地描述了非线性波在浅水中的传播,捕捉到了非线性和色散之间错综复杂的相互作用。它与著名的非线性演化方程(如 Korteweg-de Vries (KdV) 和非线性薛定谔 (NLS) 方程)有相似之处,因此可以深入了解它们共同的基本动力学。为了实现本研究的目标,我们采用了修正 Khater(MKhat)和统一(UF)方法来推导 Kairat 模型的精确解。此外,我们还利用三角-反义-B-样条曲线(TQBS)方案作为数值技术来验证这些推导解的准确性,并验证它们在浅水波传播领域的适用性。这项研究获得了一系列创新而精确的分析解,阐明了凯拉特模型复杂的非线性行为及其捕捉浅水波动态的有效性。此外,使用 TQBS 方案进行的数值模拟也证实了这些分析解,确保了它们在理解和预测浅水波现象方面的可靠性和实用性。这项工作的意义在于,它有助于加深对 Kairat 模型动力学及其在海岸工程学、海洋学和相关学科等领域的潜在应用的理解。分析和数值技术的结合为探索非线性演化方程提供了新的视角和方法,可能会使应用数学、物理学和工程学领域的研究人员受益。总之,这项全面的分析和数值研究提供了新颖的见解、精确的解决方案,为进一步探索 Kairat 模型在浅水波传播方面的物理意义和应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Validation of Analytical Solutions for the Kairat Evolution Equation

This study undertakes a comprehensive analytical and numerical investigation of the nonlinear Kairat model, a significant evolution equation that governs a wide range of physical phenomena, including shallow water waves, plasma physics, and optical fibers. The Kairat model effectively describes the propagation of nonlinear waves in shallow water, capturing the intricate interplay between nonlinearity and dispersion. It exhibits similarities with well-known nonlinear evolution equations such as the Korteweg-de Vries (KdV) and nonlinear Schrödinger (NLS) equations, thereby offering insights into their common underlying dynamics. To achieve the objectives of this research, we employ the modified Khater (MKhat) and unified (UF) methodologies to derive exact solutions for the Kairat model. Furthermore, the trigonometric-quantic-B-spline (TQBS) scheme is utilized as a numerical technique to verify the accuracy of these derived solutions and validate their applicability within the domain of shallow water wave propagation. This investigation yields a collection of innovative and precise analytical solutions, elucidating the complex nonlinear behavior of the Kairat model and its effectiveness in capturing the dynamics of shallow water waves. Moreover, these analytical solutions are corroborated through numerical simulations conducted using the TQBS scheme, ensuring their reliability and practical significance in understanding and predicting shallow water wave phenomena. The significance of this endeavor lies in its contribution to a deeper understanding of the dynamics of the Kairat model and its potential applications in fields such as coastal engineering, oceanography, and related disciplines. The integration of analytical and numerical techniques offers new perspectives and methodologies for exploring nonlinear evolution equations, potentially benefiting researchers in applied mathematics, physics, and engineering. In summary, this comprehensive analytical and numerical investigation provides novel insights, precise solutions, and a robust foundation for further exploration of the physical implications and applications of the Kairat model in the context of shallow water wave propagation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信