Shixi Hao
(, ), Ming Zhao
(, ), Qiushi Ding
(, ), Jiabing Xiao
(, ), Yanan Chen
(, ), Wei Liu
(, ), Xiaojian Li
(, ), Zhengxian Liu
(, )
{"title":"用改进的高精度 IPDG 方法对经过 SD7003 机翼的低雷诺数流进行大涡流模拟","authors":"Shixi Hao \n (, ), Ming Zhao \n (, ), Qiushi Ding \n (, ), Jiabing Xiao \n (, ), Yanan Chen \n (, ), Wei Liu \n (, ), Xiaojian Li \n (, ), Zhengxian Liu \n (, )","doi":"10.1007/s10409-024-23637-x","DOIUrl":null,"url":null,"abstract":"<div><p>At low-Reynolds-number, the performance of airfoil is known to be greatly affected by the formation and burst of a laminar separation bubble (LSB), which requires a more precise simulation of the delicate flow structures. A framework based on the interior penalty discontinuous Galerkin method and large eddy simulation approach was adopted in the present study. The performances of various subgrid models, including the Smagorinsky (SM) model, the dynamic Smagorinsky (DSM) model, the wall-adapting local-eddy-viscosity (WALE) model, and the VREMAN model, have been analyzed through flow simulations of the SD7003 airfoil at a Reynolds number of 60000. It turns out that the SM model fails to predict the emergence of LSB, even modified by the Van-Driest damping function. On the contrary, the best agreement is generally achieved by the WALE model in terms of flow separation, reattachment, and transition locations, together with the aerodynamic loads. Furthermore, the influence of numerical dissipation has also been discussed through the comparison of skin friction and resolved Reynolds stresses. As numerical dissipation decreases, the prediction accuracy of the WALE model degrades. Meanwhile, nonlinear variation could be observed from the performances of the DSM model, which could be attributed to the interaction between the numerical dissipation and the subgrid model.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large eddy simulation of low-Reynolds-number flow past the SD7003 airfoil with an improved high-precision IPDG method\",\"authors\":\"Shixi Hao \\n (, ), Ming Zhao \\n (, ), Qiushi Ding \\n (, ), Jiabing Xiao \\n (, ), Yanan Chen \\n (, ), Wei Liu \\n (, ), Xiaojian Li \\n (, ), Zhengxian Liu \\n (, )\",\"doi\":\"10.1007/s10409-024-23637-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>At low-Reynolds-number, the performance of airfoil is known to be greatly affected by the formation and burst of a laminar separation bubble (LSB), which requires a more precise simulation of the delicate flow structures. A framework based on the interior penalty discontinuous Galerkin method and large eddy simulation approach was adopted in the present study. The performances of various subgrid models, including the Smagorinsky (SM) model, the dynamic Smagorinsky (DSM) model, the wall-adapting local-eddy-viscosity (WALE) model, and the VREMAN model, have been analyzed through flow simulations of the SD7003 airfoil at a Reynolds number of 60000. It turns out that the SM model fails to predict the emergence of LSB, even modified by the Van-Driest damping function. On the contrary, the best agreement is generally achieved by the WALE model in terms of flow separation, reattachment, and transition locations, together with the aerodynamic loads. Furthermore, the influence of numerical dissipation has also been discussed through the comparison of skin friction and resolved Reynolds stresses. As numerical dissipation decreases, the prediction accuracy of the WALE model degrades. Meanwhile, nonlinear variation could be observed from the performances of the DSM model, which could be attributed to the interaction between the numerical dissipation and the subgrid model.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-23637-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-23637-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Large eddy simulation of low-Reynolds-number flow past the SD7003 airfoil with an improved high-precision IPDG method
At low-Reynolds-number, the performance of airfoil is known to be greatly affected by the formation and burst of a laminar separation bubble (LSB), which requires a more precise simulation of the delicate flow structures. A framework based on the interior penalty discontinuous Galerkin method and large eddy simulation approach was adopted in the present study. The performances of various subgrid models, including the Smagorinsky (SM) model, the dynamic Smagorinsky (DSM) model, the wall-adapting local-eddy-viscosity (WALE) model, and the VREMAN model, have been analyzed through flow simulations of the SD7003 airfoil at a Reynolds number of 60000. It turns out that the SM model fails to predict the emergence of LSB, even modified by the Van-Driest damping function. On the contrary, the best agreement is generally achieved by the WALE model in terms of flow separation, reattachment, and transition locations, together with the aerodynamic loads. Furthermore, the influence of numerical dissipation has also been discussed through the comparison of skin friction and resolved Reynolds stresses. As numerical dissipation decreases, the prediction accuracy of the WALE model degrades. Meanwhile, nonlinear variation could be observed from the performances of the DSM model, which could be attributed to the interaction between the numerical dissipation and the subgrid model.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics