{"title":"用黑洞 X 射线数据检验广义相对论","authors":"C. Bambi","doi":"10.1134/S106377962470103X","DOIUrl":null,"url":null,"abstract":"<p>The theory of General Relativity has successfully passed a large number of observational tests without requiring any adjustment from its original version proposed by Einstein in 1915. The past 8 years have seen significant advancements in the study of the strong-field regime, which can now be tested with gravitational waves, X-ray data, and black hole imaging. This is a compact and pedagogical review on the state-of-the-art of the tests of General Relativity with black hole X-ray data.</p>","PeriodicalId":729,"journal":{"name":"Physics of Particles and Nuclei","volume":"55 6","pages":"1420 - 1425"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S106377962470103X.pdf","citationCount":"0","resultStr":"{\"title\":\"Testing General Relativity with Black Hole X-Ray Data\",\"authors\":\"C. Bambi\",\"doi\":\"10.1134/S106377962470103X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The theory of General Relativity has successfully passed a large number of observational tests without requiring any adjustment from its original version proposed by Einstein in 1915. The past 8 years have seen significant advancements in the study of the strong-field regime, which can now be tested with gravitational waves, X-ray data, and black hole imaging. This is a compact and pedagogical review on the state-of-the-art of the tests of General Relativity with black hole X-ray data.</p>\",\"PeriodicalId\":729,\"journal\":{\"name\":\"Physics of Particles and Nuclei\",\"volume\":\"55 6\",\"pages\":\"1420 - 1425\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S106377962470103X.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Particles and Nuclei\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106377962470103X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Particles and Nuclei","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106377962470103X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
摘要
广义相对论已经成功地通过了大量的观测检验,而无需对爱因斯坦在 1915 年提出的最初版本进行任何调整。过去 8 年中,强场机制的研究取得了重大进展,现在可以用引力波、X 射线数据和黑洞成像对其进行检验。这是一篇关于用黑洞 X 射线数据检验广义相对论的最新进展的简明扼要的教学评论。
Testing General Relativity with Black Hole X-Ray Data
The theory of General Relativity has successfully passed a large number of observational tests without requiring any adjustment from its original version proposed by Einstein in 1915. The past 8 years have seen significant advancements in the study of the strong-field regime, which can now be tested with gravitational waves, X-ray data, and black hole imaging. This is a compact and pedagogical review on the state-of-the-art of the tests of General Relativity with black hole X-ray data.
期刊介绍:
The journal Fizika Elementarnykh Chastits i Atomnogo Yadr of the Joint Institute for Nuclear Research (JINR, Dubna) was founded by Academician N.N. Bogolyubov in August 1969. The Editors-in-chief of the journal were Academician N.N. Bogolyubov (1970–1992) and Academician A.M. Baldin (1992–2001). Its English translation, Physics of Particles and Nuclei, appears simultaneously with the original Russian-language edition. Published by leading physicists from the JINR member states, as well as by scientists from other countries, review articles in this journal examine problems of elementary particle physics, nuclear physics, condensed matter physics, experimental data processing, accelerators and related instrumentation ecology and radiology.