分形伪微分算子的谱理论

IF 0.8 Q2 MATHEMATICS
Hans Triebel
{"title":"分形伪微分算子的谱理论","authors":"Hans Triebel","doi":"10.1007/s43036-024-00381-2","DOIUrl":null,"url":null,"abstract":"<div><p>The paper deals with the distribution of eigenvalues of the compact fractal pseudodifferential operator <span>\\(T^\\mu _\\tau \\)</span>, </p><div><div><span>$$\\begin{aligned} \\big ( T^\\mu _\\tau f\\big )(x) = \\int _{{{\\mathbb {R}}}^n} e^{-ix\\xi } \\, \\tau (x,\\xi ) \\, \\big ( f\\mu \\big )^\\vee (\\xi ) \\, {\\mathrm d}\\xi , \\qquad x\\in {{\\mathbb {R}}}^n, \\end{aligned}$$</span></div></div><p>in suitable special Besov spaces <span>\\(B^s_p ({{\\mathbb {R}}}^n) = B^s_{p,p} ({{\\mathbb {R}}}^n)\\)</span>, <span>\\(s&gt;0\\)</span>, <span>\\(1&lt;p&lt;\\infty \\)</span>. Here <span>\\(\\tau (x,\\xi )\\)</span> are the symbols of (smooth) pseudodifferential operators belonging to appropriate Hörmander classes <span>\\(\\Psi ^\\sigma _{1, \\delta } ({{\\mathbb {R}}}^n)\\)</span>, <span>\\(\\sigma &lt;0\\)</span>, <span>\\(0 \\le \\delta \\le 1\\)</span> (including the exotic case <span>\\(\\delta =1\\)</span>) whereas <span>\\(\\mu \\)</span> is the Hausdorff measure of a compact <i>d</i>–set <span>\\(\\Gamma \\)</span> in <span>\\({{\\mathbb {R}}}^n\\)</span>, <span>\\(0&lt;d&lt;n\\)</span>. This extends previous assertions for the positive-definite selfadjoint fractal differential operator <span>\\((\\textrm{id}- \\Delta )^{\\sigma /2} \\mu \\)</span> based on Hilbert space arguments in the context of suitable Sobolev spaces <span>\\(H^s ({{\\mathbb {R}}}^n) = B^s_2 ({{\\mathbb {R}}}^n)\\)</span>. We collect the outcome in the <b>Main Theorem</b> below. Proofs are based on estimates for the entropy numbers of the compact trace operator </p><div><div><span>$$\\begin{aligned} \\textrm{tr}\\,_\\mu : \\quad B^s_p ({{\\mathbb {R}}}^n) \\hookrightarrow L_p (\\Gamma , \\mu ), \\quad s&gt;0, \\quad 1&lt;p&lt;\\infty . \\end{aligned}$$</span></div></div><p>We add at the end of the paper a few personal reminiscences illuminating the role of Pietsch in connection with the creation of approximation numbers and entropy numbers.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00381-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Spectral theory for fractal pseudodifferential operators\",\"authors\":\"Hans Triebel\",\"doi\":\"10.1007/s43036-024-00381-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper deals with the distribution of eigenvalues of the compact fractal pseudodifferential operator <span>\\\\(T^\\\\mu _\\\\tau \\\\)</span>, </p><div><div><span>$$\\\\begin{aligned} \\\\big ( T^\\\\mu _\\\\tau f\\\\big )(x) = \\\\int _{{{\\\\mathbb {R}}}^n} e^{-ix\\\\xi } \\\\, \\\\tau (x,\\\\xi ) \\\\, \\\\big ( f\\\\mu \\\\big )^\\\\vee (\\\\xi ) \\\\, {\\\\mathrm d}\\\\xi , \\\\qquad x\\\\in {{\\\\mathbb {R}}}^n, \\\\end{aligned}$$</span></div></div><p>in suitable special Besov spaces <span>\\\\(B^s_p ({{\\\\mathbb {R}}}^n) = B^s_{p,p} ({{\\\\mathbb {R}}}^n)\\\\)</span>, <span>\\\\(s&gt;0\\\\)</span>, <span>\\\\(1&lt;p&lt;\\\\infty \\\\)</span>. Here <span>\\\\(\\\\tau (x,\\\\xi )\\\\)</span> are the symbols of (smooth) pseudodifferential operators belonging to appropriate Hörmander classes <span>\\\\(\\\\Psi ^\\\\sigma _{1, \\\\delta } ({{\\\\mathbb {R}}}^n)\\\\)</span>, <span>\\\\(\\\\sigma &lt;0\\\\)</span>, <span>\\\\(0 \\\\le \\\\delta \\\\le 1\\\\)</span> (including the exotic case <span>\\\\(\\\\delta =1\\\\)</span>) whereas <span>\\\\(\\\\mu \\\\)</span> is the Hausdorff measure of a compact <i>d</i>–set <span>\\\\(\\\\Gamma \\\\)</span> in <span>\\\\({{\\\\mathbb {R}}}^n\\\\)</span>, <span>\\\\(0&lt;d&lt;n\\\\)</span>. This extends previous assertions for the positive-definite selfadjoint fractal differential operator <span>\\\\((\\\\textrm{id}- \\\\Delta )^{\\\\sigma /2} \\\\mu \\\\)</span> based on Hilbert space arguments in the context of suitable Sobolev spaces <span>\\\\(H^s ({{\\\\mathbb {R}}}^n) = B^s_2 ({{\\\\mathbb {R}}}^n)\\\\)</span>. We collect the outcome in the <b>Main Theorem</b> below. Proofs are based on estimates for the entropy numbers of the compact trace operator </p><div><div><span>$$\\\\begin{aligned} \\\\textrm{tr}\\\\,_\\\\mu : \\\\quad B^s_p ({{\\\\mathbb {R}}}^n) \\\\hookrightarrow L_p (\\\\Gamma , \\\\mu ), \\\\quad s&gt;0, \\\\quad 1&lt;p&lt;\\\\infty . \\\\end{aligned}$$</span></div></div><p>We add at the end of the paper a few personal reminiscences illuminating the role of Pietsch in connection with the creation of approximation numbers and entropy numbers.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43036-024-00381-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00381-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00381-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了紧凑分形伪微分算子 \(T^\mu _\tau \)的特征值分布,$$\begin{aligned}。\big ( T^\mu _\tau f\big )(x) = \int _{{{\mathbb {R}}}^n} e^{-ix\xi }\, \tau (x) = \int _{{{{\mathbb {R}}}^n} e^{-ix\xi }\tau (x,\xi ) \, \big ( f\mu \big )^\vee (\xi ) \, {\mathrm d}\xi , \qquad x\in {{\mathbb {R}}^n、\end{aligned}$$in suitable special Besov spaces \(B^s_p ({{\mathbb {R}}^n) = B^s_{p,p} ({{\mathbb {R}}^n)\),\(s>;0\),\(1<p<\infty \)。这里的 \(\tau (x,\xi )\) 是(平滑)伪微分算子的符号,属于适当的霍尔曼德类 \(\Psi ^\sigma _{1, \delta }).({{\mathbb {R}}^n)\),\(\sigma <;0),\(0 le \delta \le 1\) (包括特殊情况 \(\delta =1\)),而 \(\mu \)是在\({{mathbb {R}}^n\),\(0<d<n\) 中的紧凑 d 集 \(\Gamma \)的豪斯多夫度量。)这扩展了之前在合适的索波列夫空间(H^s ({\mathbb {R}}^n) = B^s_2 ({\mathbb{R}}^n))背景下基于希尔伯特空间论证的正有限自相关分形微分算子 \((\textrm{id}- \Delta )^{\sigma /2} \mu \)的论断。我们将结果收集在下面的主定理中。证明基于对紧凑迹算子 $$\begin{aligned} 的熵数的估计。\textrm{tr}\,_\mu : \quad B^s_p ({{\mathbb {R}}^n) \hookrightarrow L_p (\Gamma , \mu ), \quad s>0, \quad 1<p<\infty .\end{aligned}$$我们在文末补充了一些个人回忆,以阐明皮特希在创建近似数和熵数方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral theory for fractal pseudodifferential operators

The paper deals with the distribution of eigenvalues of the compact fractal pseudodifferential operator \(T^\mu _\tau \),

$$\begin{aligned} \big ( T^\mu _\tau f\big )(x) = \int _{{{\mathbb {R}}}^n} e^{-ix\xi } \, \tau (x,\xi ) \, \big ( f\mu \big )^\vee (\xi ) \, {\mathrm d}\xi , \qquad x\in {{\mathbb {R}}}^n, \end{aligned}$$

in suitable special Besov spaces \(B^s_p ({{\mathbb {R}}}^n) = B^s_{p,p} ({{\mathbb {R}}}^n)\), \(s>0\), \(1<p<\infty \). Here \(\tau (x,\xi )\) are the symbols of (smooth) pseudodifferential operators belonging to appropriate Hörmander classes \(\Psi ^\sigma _{1, \delta } ({{\mathbb {R}}}^n)\), \(\sigma <0\), \(0 \le \delta \le 1\) (including the exotic case \(\delta =1\)) whereas \(\mu \) is the Hausdorff measure of a compact d–set \(\Gamma \) in \({{\mathbb {R}}}^n\), \(0<d<n\). This extends previous assertions for the positive-definite selfadjoint fractal differential operator \((\textrm{id}- \Delta )^{\sigma /2} \mu \) based on Hilbert space arguments in the context of suitable Sobolev spaces \(H^s ({{\mathbb {R}}}^n) = B^s_2 ({{\mathbb {R}}}^n)\). We collect the outcome in the Main Theorem below. Proofs are based on estimates for the entropy numbers of the compact trace operator

$$\begin{aligned} \textrm{tr}\,_\mu : \quad B^s_p ({{\mathbb {R}}}^n) \hookrightarrow L_p (\Gamma , \mu ), \quad s>0, \quad 1<p<\infty . \end{aligned}$$

We add at the end of the paper a few personal reminiscences illuminating the role of Pietsch in connection with the creation of approximation numbers and entropy numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信