磁性金属基 MOF 复合材料:微波吸收特性的多维调节策略

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Zuxiang Mu, Peitao Xie, Anoud Saud Alshammari, Salah M. El-Bahy, Juanna Ren, Gemeng Liang, Mukun He, Zeinhom M. El-Bahy, Peng Zhang, Chunzhao Liu
{"title":"磁性金属基 MOF 复合材料:微波吸收特性的多维调节策略","authors":"Zuxiang Mu,&nbsp;Peitao Xie,&nbsp;Anoud Saud Alshammari,&nbsp;Salah M. El-Bahy,&nbsp;Juanna Ren,&nbsp;Gemeng Liang,&nbsp;Mukun He,&nbsp;Zeinhom M. El-Bahy,&nbsp;Peng Zhang,&nbsp;Chunzhao Liu","doi":"10.1007/s42114-024-00991-7","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid development of information and communication technology has led to a considerable increase in electromagnetic pollution, prompting the necessity for designing microwave-absorbing materials as an unavoidable trend. The incorporation of magnetic materials can enhance the magnetic loss capacity of microwave-absorbing materials, thereby improving their absorption performance. However, magnetic materials, especially the high-density metals or oxides, are unsuitable for the lightweight design principle of microwave-absorbing materials. In recent years, metal–organic frameworks (MOFs), particularly magnetic metal-based MOFs, are considered advantageous competitors in designing high-performance microwave-absorbing materials because of their high porosity, adjustable structure, and inherent magnetism. This review summarizes the recent progress in studies of microwave-absorbing materials using magnetic metal-based MOFs and their derivatives, including their synthesis process, microwave absorption mechanisms, and comparisons of absorbing performances for MOFs-derived materials with different compositions and microstructures. Finally, potential challenges and future development prospects that MOF-derived composite materials may face in the field of microwave absorption are put forward. We hope to shed light on the mechanism of microwave absorption for magnetic metal-based MOFs, as well as the effect of subsequent processing on the MOF precursor in this regard.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic metal-based MOF composite materials: a multidimensional regulation strategy for microwave absorption properties\",\"authors\":\"Zuxiang Mu,&nbsp;Peitao Xie,&nbsp;Anoud Saud Alshammari,&nbsp;Salah M. El-Bahy,&nbsp;Juanna Ren,&nbsp;Gemeng Liang,&nbsp;Mukun He,&nbsp;Zeinhom M. El-Bahy,&nbsp;Peng Zhang,&nbsp;Chunzhao Liu\",\"doi\":\"10.1007/s42114-024-00991-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid development of information and communication technology has led to a considerable increase in electromagnetic pollution, prompting the necessity for designing microwave-absorbing materials as an unavoidable trend. The incorporation of magnetic materials can enhance the magnetic loss capacity of microwave-absorbing materials, thereby improving their absorption performance. However, magnetic materials, especially the high-density metals or oxides, are unsuitable for the lightweight design principle of microwave-absorbing materials. In recent years, metal–organic frameworks (MOFs), particularly magnetic metal-based MOFs, are considered advantageous competitors in designing high-performance microwave-absorbing materials because of their high porosity, adjustable structure, and inherent magnetism. This review summarizes the recent progress in studies of microwave-absorbing materials using magnetic metal-based MOFs and their derivatives, including their synthesis process, microwave absorption mechanisms, and comparisons of absorbing performances for MOFs-derived materials with different compositions and microstructures. Finally, potential challenges and future development prospects that MOF-derived composite materials may face in the field of microwave absorption are put forward. We hope to shed light on the mechanism of microwave absorption for magnetic metal-based MOFs, as well as the effect of subsequent processing on the MOF precursor in this regard.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00991-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00991-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

信息和通信技术的快速发展导致电磁污染大幅增加,因此设计微波吸收材料已成为不可避免的趋势。磁性材料的加入可以增强微波吸收材料的磁损耗能力,从而改善其吸收性能。然而,磁性材料,尤其是高密度金属或氧化物,并不适合微波吸收材料的轻量化设计原则。近年来,金属有机框架(MOFs),尤其是磁性金属基 MOFs 因其高孔隙率、可调结构和固有磁性,被认为是设计高性能微波吸收材料的有利竞争者。本综述总结了利用磁性金属基 MOFs 及其衍生物研究微波吸收材料的最新进展,包括其合成工艺、微波吸收机理,以及不同成分和微结构的 MOFs 衍生材料的吸收性能比较。最后,提出了 MOF 衍生复合材料在微波吸收领域可能面临的挑战和未来的发展前景。我们希望能阐明磁性金属基 MOFs 的微波吸收机理,以及后续加工对 MOF 前体在这方面的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic metal-based MOF composite materials: a multidimensional regulation strategy for microwave absorption properties

The rapid development of information and communication technology has led to a considerable increase in electromagnetic pollution, prompting the necessity for designing microwave-absorbing materials as an unavoidable trend. The incorporation of magnetic materials can enhance the magnetic loss capacity of microwave-absorbing materials, thereby improving their absorption performance. However, magnetic materials, especially the high-density metals or oxides, are unsuitable for the lightweight design principle of microwave-absorbing materials. In recent years, metal–organic frameworks (MOFs), particularly magnetic metal-based MOFs, are considered advantageous competitors in designing high-performance microwave-absorbing materials because of their high porosity, adjustable structure, and inherent magnetism. This review summarizes the recent progress in studies of microwave-absorbing materials using magnetic metal-based MOFs and their derivatives, including their synthesis process, microwave absorption mechanisms, and comparisons of absorbing performances for MOFs-derived materials with different compositions and microstructures. Finally, potential challenges and future development prospects that MOF-derived composite materials may face in the field of microwave absorption are put forward. We hope to shed light on the mechanism of microwave absorption for magnetic metal-based MOFs, as well as the effect of subsequent processing on the MOF precursor in this regard.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信