{"title":"量子漫步特征函数的指数衰减特性","authors":"Kazuyuki Wada","doi":"10.1007/s43036-024-00358-1","DOIUrl":null,"url":null,"abstract":"<div><p>Under an abstract setting, we show that eigenvectors belong to discrete spectra of unitary operators have exponential decay properties. We apply the main theorem to multi-dimensional quantum walks and show that eigenfunctions belong to a discrete spectrum decay exponentially at infinity.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential decay property for eigenfunctions of quantum walks\",\"authors\":\"Kazuyuki Wada\",\"doi\":\"10.1007/s43036-024-00358-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Under an abstract setting, we show that eigenvectors belong to discrete spectra of unitary operators have exponential decay properties. We apply the main theorem to multi-dimensional quantum walks and show that eigenfunctions belong to a discrete spectrum decay exponentially at infinity.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 3\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00358-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00358-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Exponential decay property for eigenfunctions of quantum walks
Under an abstract setting, we show that eigenvectors belong to discrete spectra of unitary operators have exponential decay properties. We apply the main theorem to multi-dimensional quantum walks and show that eigenfunctions belong to a discrete spectrum decay exponentially at infinity.