基于 ZIF-8 增强型多功能、高性能纳米复合水凝胶的可穿戴应变传感器在医疗保健领域的应用

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Md Sazzadur Rahman, Muhammad Toyabur Rahman, Hitendra Kumar, Keekyoung Kim, Seonghwan Kim
{"title":"基于 ZIF-8 增强型多功能、高性能纳米复合水凝胶的可穿戴应变传感器在医疗保健领域的应用","authors":"Md Sazzadur Rahman,&nbsp;Muhammad Toyabur Rahman,&nbsp;Hitendra Kumar,&nbsp;Keekyoung Kim,&nbsp;Seonghwan Kim","doi":"10.1007/s42114-024-00987-3","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid growth of strain sensors in cutting-edge applications, including wearable human–machine interfaces, electronic skins, soft robotics, and advanced healthcare, has greatly heightened the demand for high-performance hydrogels. In this report, we demonstrate a multifunctional, highly stretchable, and robust conductive hydrogel composed of polyacrylamide (AM), 2-hydroxyethyl acrylate (HEA), and lithium chloride (LiCl) reinforced by zeolite imidazolate frameworks-8 (ZIF-8) through a one-pot free radical polymerization method. The synergy of electrostatic interactions between the AM-HEA polymer chain and nanoporous ZIF-8 enhances the mechanical properties, while the abundant hydrogen bonds originating from the polarized surface of ZIF-8 also introduce multifunctionality to the nanocomposite hydrogel. Tuning the composition of ZIF-8 within the hydrogel matrix results in the attainment of outstanding properties such as excellent stretchability of 808%, high toughness of 453.5 kJm<sup>−3</sup>, and minimal hysteresis as low as 2.6%. Notably, the nanocomposite hydrogel displays strong adhesion, self-healing properties, and resilience in freezing temperatures down to − 20 °C. Furthermore, the as-developed strain sensor exhibits relatively high sensitivity with a gauge factor of 2.98 across a wide dynamic range, along with fast response and recovery times of 280 ms and 330 ms, respectively. The multifunctionality and electromechanical properties of ZIF-8 enhanced high-performance hydrogel hold promise for its application as a wearable, flexible, and stretchable strain sensor for detecting human physiological activities and providing vital biomechanical information for health assessment.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 5","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZIF-8-enhanced multifunctional, high-performance nanocomposite hydrogel–based wearable strain sensor for healthcare applications\",\"authors\":\"Md Sazzadur Rahman,&nbsp;Muhammad Toyabur Rahman,&nbsp;Hitendra Kumar,&nbsp;Keekyoung Kim,&nbsp;Seonghwan Kim\",\"doi\":\"10.1007/s42114-024-00987-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid growth of strain sensors in cutting-edge applications, including wearable human–machine interfaces, electronic skins, soft robotics, and advanced healthcare, has greatly heightened the demand for high-performance hydrogels. In this report, we demonstrate a multifunctional, highly stretchable, and robust conductive hydrogel composed of polyacrylamide (AM), 2-hydroxyethyl acrylate (HEA), and lithium chloride (LiCl) reinforced by zeolite imidazolate frameworks-8 (ZIF-8) through a one-pot free radical polymerization method. The synergy of electrostatic interactions between the AM-HEA polymer chain and nanoporous ZIF-8 enhances the mechanical properties, while the abundant hydrogen bonds originating from the polarized surface of ZIF-8 also introduce multifunctionality to the nanocomposite hydrogel. Tuning the composition of ZIF-8 within the hydrogel matrix results in the attainment of outstanding properties such as excellent stretchability of 808%, high toughness of 453.5 kJm<sup>−3</sup>, and minimal hysteresis as low as 2.6%. Notably, the nanocomposite hydrogel displays strong adhesion, self-healing properties, and resilience in freezing temperatures down to − 20 °C. Furthermore, the as-developed strain sensor exhibits relatively high sensitivity with a gauge factor of 2.98 across a wide dynamic range, along with fast response and recovery times of 280 ms and 330 ms, respectively. The multifunctionality and electromechanical properties of ZIF-8 enhanced high-performance hydrogel hold promise for its application as a wearable, flexible, and stretchable strain sensor for detecting human physiological activities and providing vital biomechanical information for health assessment.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00987-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00987-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

应变传感器在可穿戴人机界面、电子皮肤、软机器人和先进医疗保健等尖端应用中的快速发展,大大提高了对高性能水凝胶的需求。在本报告中,我们展示了一种由聚丙烯酰胺(AM)、2-羟乙基丙烯酸酯(HEA)和氯化锂(LiCl)组成的多功能、高拉伸性和坚固的导电水凝胶,该水凝胶由沸石咪唑啉框架-8(ZIF-8)通过一锅自由基聚合法增强。AM-HEA 聚合物链与纳米多孔 ZIF-8 之间的静电相互作用协同作用增强了其机械性能,而 ZIF-8 极化表面产生的大量氢键也为纳米复合水凝胶带来了多功能性。通过调节水凝胶基质中 ZIF-8 的成分,可以获得出色的性能,如 808% 的卓越拉伸性、453.5 kJm-3 的高韧性和低至 2.6% 的最小滞后。值得注意的是,这种纳米复合水凝胶具有很强的粘附性和自愈性,在低至零下 20 ℃ 的冰冻温度下也能保持弹性。此外,所开发的应变传感器在较宽的动态范围内表现出较高的灵敏度(测量系数为 2.98),以及快速的响应和恢复时间(分别为 280 毫秒和 330 毫秒)。ZIF-8 增强型高性能水凝胶的多功能性和机电特性使其有望用作可穿戴、柔性和可拉伸的应变传感器,用于检测人体生理活动,并为健康评估提供重要的生物力学信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZIF-8-enhanced multifunctional, high-performance nanocomposite hydrogel–based wearable strain sensor for healthcare applications

The rapid growth of strain sensors in cutting-edge applications, including wearable human–machine interfaces, electronic skins, soft robotics, and advanced healthcare, has greatly heightened the demand for high-performance hydrogels. In this report, we demonstrate a multifunctional, highly stretchable, and robust conductive hydrogel composed of polyacrylamide (AM), 2-hydroxyethyl acrylate (HEA), and lithium chloride (LiCl) reinforced by zeolite imidazolate frameworks-8 (ZIF-8) through a one-pot free radical polymerization method. The synergy of electrostatic interactions between the AM-HEA polymer chain and nanoporous ZIF-8 enhances the mechanical properties, while the abundant hydrogen bonds originating from the polarized surface of ZIF-8 also introduce multifunctionality to the nanocomposite hydrogel. Tuning the composition of ZIF-8 within the hydrogel matrix results in the attainment of outstanding properties such as excellent stretchability of 808%, high toughness of 453.5 kJm−3, and minimal hysteresis as low as 2.6%. Notably, the nanocomposite hydrogel displays strong adhesion, self-healing properties, and resilience in freezing temperatures down to − 20 °C. Furthermore, the as-developed strain sensor exhibits relatively high sensitivity with a gauge factor of 2.98 across a wide dynamic range, along with fast response and recovery times of 280 ms and 330 ms, respectively. The multifunctionality and electromechanical properties of ZIF-8 enhanced high-performance hydrogel hold promise for its application as a wearable, flexible, and stretchable strain sensor for detecting human physiological activities and providing vital biomechanical information for health assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信