褶皱中重量最大的载体,II

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Kazufumi Kimoto, Soo Teck Lee
{"title":"褶皱中重量最大的载体,II","authors":"Kazufumi Kimoto,&nbsp;Soo Teck Lee","doi":"10.1007/s00220-024-05115-2","DOIUrl":null,"url":null,"abstract":"<div><p>For an irreducible polynomial representation <i>V</i> of the general linear group <span>\\(\\textrm{GL}_n(\\mathbb {C})\\)</span>, we realize its symmetric square <span>\\(S^2(V)\\)</span> and its alternating square <span>\\(\\Lambda ^{\\hspace{-1.5pt}{2}}(V)\\)</span> as spaces of polynomial functions. In the case when <i>V</i> is labeled by a Young diagram with at most 2 rows, we describe explicitly all the <span>\\(\\textrm{GL}_n(\\mathbb {C})\\)</span> highest weight vectors which occur in <span>\\(V\\otimes V\\)</span>, <span>\\(S^2(V)\\)</span> and <span>\\(\\Lambda ^{\\hspace{-1.5pt}{2}}(V)\\)</span> respectively. In particular, we obtain new description of the multiplicities in <span>\\(S^2(V)\\)</span> and <span>\\(\\Lambda ^{\\hspace{-1.5pt}{2}}(V)\\)</span>.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05115-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Highest Weight Vectors in Plethysms, II\",\"authors\":\"Kazufumi Kimoto,&nbsp;Soo Teck Lee\",\"doi\":\"10.1007/s00220-024-05115-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For an irreducible polynomial representation <i>V</i> of the general linear group <span>\\\\(\\\\textrm{GL}_n(\\\\mathbb {C})\\\\)</span>, we realize its symmetric square <span>\\\\(S^2(V)\\\\)</span> and its alternating square <span>\\\\(\\\\Lambda ^{\\\\hspace{-1.5pt}{2}}(V)\\\\)</span> as spaces of polynomial functions. In the case when <i>V</i> is labeled by a Young diagram with at most 2 rows, we describe explicitly all the <span>\\\\(\\\\textrm{GL}_n(\\\\mathbb {C})\\\\)</span> highest weight vectors which occur in <span>\\\\(V\\\\otimes V\\\\)</span>, <span>\\\\(S^2(V)\\\\)</span> and <span>\\\\(\\\\Lambda ^{\\\\hspace{-1.5pt}{2}}(V)\\\\)</span> respectively. In particular, we obtain new description of the multiplicities in <span>\\\\(S^2(V)\\\\)</span> and <span>\\\\(\\\\Lambda ^{\\\\hspace{-1.5pt}{2}}(V)\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05115-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05115-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05115-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于一般线性群 \(\textrm{GL}_n(\mathbb {C})\)的不可还原多项式表示 V,我们把它的对称平方 \(S^2(V)\) 和交替平方 \(\Lambda ^{\hspace{-1.5pt}{2}}(V)\) 作为多项式函数空间来实现。在 V 被一个最多有 2 行的 Young 图标注的情况下,我们分别明确地描述了出现在 \(V\otimes V\), \(S^2(V)\) 和 \(\Lambda ^{\hspace{-1.5pt}{2}}(V)\) 中的所有 \(\textrm{GL}_n(\mathbb {C})\)最高权向量。特别是,我们得到了对\(S^2(V)\)和\(\Lambda ^{/hspace{-1.5pt}{2}}(V)\)中乘数的新描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highest Weight Vectors in Plethysms, II

For an irreducible polynomial representation V of the general linear group \(\textrm{GL}_n(\mathbb {C})\), we realize its symmetric square \(S^2(V)\) and its alternating square \(\Lambda ^{\hspace{-1.5pt}{2}}(V)\) as spaces of polynomial functions. In the case when V is labeled by a Young diagram with at most 2 rows, we describe explicitly all the \(\textrm{GL}_n(\mathbb {C})\) highest weight vectors which occur in \(V\otimes V\), \(S^2(V)\) and \(\Lambda ^{\hspace{-1.5pt}{2}}(V)\) respectively. In particular, we obtain new description of the multiplicities in \(S^2(V)\) and \(\Lambda ^{\hspace{-1.5pt}{2}}(V)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信