{"title":"钛铜的阳极蚀刻表面处理和抗菌性能","authors":"Zenglong Yan, Shuyuan Zhang, Ling Ren, Xizhuang Bai, Ke Yang, Xiang Wei","doi":"10.1007/s40195-024-01734-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study used an anodic etching (AE) method to construct a hierarchical rough surface on the surface of the Cu-bearing antibacterial titanium alloy, Ti–<i>x</i>Cu (<i>x</i> = 3, 5, 7 wt%), a three-dimensional structure with nested micro-/submicro-pores and internal cavities, which is conducive to the adhesion and growth of bone cells. After AE treatment, with increase of the Cu content in the alloy, the surface of Ti–Cu alloy became sharper, with more fine micropores and internal cavities, thus increasing the surface area. The results indicated that the AE/Ti–Cu alloy exhibited good antibacterial properties and had the effect of inhibiting bacterial biofilm formation. AE treatment could increase the Cu ions release of Ti–Cu alloy in saline, and the higher the Cu content in the alloy, the more Cu ions release, resulting in stronger antibacterial performance of the alloy. AE/Ti–Cu alloy showed excellent biocompatibility, similar to the pure Ti. Therefore, anodic etching is a safe and effective surface treatment method for Ti–Cu alloy, with good clinical application prospects.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 10","pages":"1767 - 1776"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anodic Etching Surface Treatment and Antibacterial Properties of Ti–Cu\",\"authors\":\"Zenglong Yan, Shuyuan Zhang, Ling Ren, Xizhuang Bai, Ke Yang, Xiang Wei\",\"doi\":\"10.1007/s40195-024-01734-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study used an anodic etching (AE) method to construct a hierarchical rough surface on the surface of the Cu-bearing antibacterial titanium alloy, Ti–<i>x</i>Cu (<i>x</i> = 3, 5, 7 wt%), a three-dimensional structure with nested micro-/submicro-pores and internal cavities, which is conducive to the adhesion and growth of bone cells. After AE treatment, with increase of the Cu content in the alloy, the surface of Ti–Cu alloy became sharper, with more fine micropores and internal cavities, thus increasing the surface area. The results indicated that the AE/Ti–Cu alloy exhibited good antibacterial properties and had the effect of inhibiting bacterial biofilm formation. AE treatment could increase the Cu ions release of Ti–Cu alloy in saline, and the higher the Cu content in the alloy, the more Cu ions release, resulting in stronger antibacterial performance of the alloy. AE/Ti–Cu alloy showed excellent biocompatibility, similar to the pure Ti. Therefore, anodic etching is a safe and effective surface treatment method for Ti–Cu alloy, with good clinical application prospects.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":\"37 10\",\"pages\":\"1767 - 1776\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-024-01734-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01734-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
本研究采用阳极蚀刻(AE)方法在含铜抗菌钛合金 Ti-xCu (x = 3, 5, 7 wt%)表面构建了分层粗糙表面,这是一种具有嵌套微/亚微孔和内腔的三维结构,有利于骨细胞的粘附和生长。经过 AE 处理后,随着合金中铜含量的增加,Ti-Cu 合金的表面变得更加锐利,具有更多的细微孔隙和内部空腔,从而增加了比表面积。结果表明,AE/Ti-Cu 合金具有良好的抗菌性能,对细菌生物膜的形成有抑制作用。AE 处理可增加 Ti-Cu 合金在生理盐水中的 Cu 离子释放量,合金中 Cu 含量越高,Cu 离子释放量越大,从而使合金具有更强的抗菌性能。AE/Ti-Cu 合金表现出了与纯 Ti 相似的优异生物相容性。因此,阳极蚀刻是一种安全有效的 Ti-Cu 合金表面处理方法,具有良好的临床应用前景。
Anodic Etching Surface Treatment and Antibacterial Properties of Ti–Cu
This study used an anodic etching (AE) method to construct a hierarchical rough surface on the surface of the Cu-bearing antibacterial titanium alloy, Ti–xCu (x = 3, 5, 7 wt%), a three-dimensional structure with nested micro-/submicro-pores and internal cavities, which is conducive to the adhesion and growth of bone cells. After AE treatment, with increase of the Cu content in the alloy, the surface of Ti–Cu alloy became sharper, with more fine micropores and internal cavities, thus increasing the surface area. The results indicated that the AE/Ti–Cu alloy exhibited good antibacterial properties and had the effect of inhibiting bacterial biofilm formation. AE treatment could increase the Cu ions release of Ti–Cu alloy in saline, and the higher the Cu content in the alloy, the more Cu ions release, resulting in stronger antibacterial performance of the alloy. AE/Ti–Cu alloy showed excellent biocompatibility, similar to the pure Ti. Therefore, anodic etching is a safe and effective surface treatment method for Ti–Cu alloy, with good clinical application prospects.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.