Shengxue Wang
(, ), Hantao Hou
(, ), Zhenze Yang
(, ), Yu Teng
(, ), Zhiwen Wang
(, ), Hongyu Zhao
(, ), Yang Liu
(, ), Hongan Ma
(, ), Xiaopeng Jia
(, )
{"title":"提高中国型立方体压力机极限压力的方案","authors":"Shengxue Wang \n (, ), Hantao Hou \n (, ), Zhenze Yang \n (, ), Yu Teng \n (, ), Zhiwen Wang \n (, ), Hongyu Zhao \n (, ), Yang Liu \n (, ), Hongan Ma \n (, ), Xiaopeng Jia \n (, )","doi":"10.1007/s10409-024-24225-x","DOIUrl":null,"url":null,"abstract":"<div><p>The China-type cubic press (CCP) is widely used in the high-pressure field because of its simple operation and low cost. However, the low ultimate pressure inside the cavity of CCP has limited its application. In order to improve the ultimate pressure of the cavity, this paper simulates the pressure transfer efficiency and the Von Mises stress (VMS) of the tungsten carbide (WC) anvil. We find that the effect of the pretightening force of the WC anvil can be changed by changing the angle of the steel supporting ring. When the angle of the steel supporting ring is 1.2°, the pretightening force of the WC anvil is the most uniform, and the support effect of the WC anvil is the best. At the same time, this paper designs a double-beveled WC (D-WC) anvil. The D-WC anvil can not only improve the ultimate pressure of the cavity, but also ensure the stability of the cavity and the durability of the WC anvil. The design in this paper can also be used with the first-stage pressurization assembly to achieve better pressurization effect.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scheme to increase the ultimate pressure of the China-type cubic press\",\"authors\":\"Shengxue Wang \\n (, ), Hantao Hou \\n (, ), Zhenze Yang \\n (, ), Yu Teng \\n (, ), Zhiwen Wang \\n (, ), Hongyu Zhao \\n (, ), Yang Liu \\n (, ), Hongan Ma \\n (, ), Xiaopeng Jia \\n (, )\",\"doi\":\"10.1007/s10409-024-24225-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The China-type cubic press (CCP) is widely used in the high-pressure field because of its simple operation and low cost. However, the low ultimate pressure inside the cavity of CCP has limited its application. In order to improve the ultimate pressure of the cavity, this paper simulates the pressure transfer efficiency and the Von Mises stress (VMS) of the tungsten carbide (WC) anvil. We find that the effect of the pretightening force of the WC anvil can be changed by changing the angle of the steel supporting ring. When the angle of the steel supporting ring is 1.2°, the pretightening force of the WC anvil is the most uniform, and the support effect of the WC anvil is the best. At the same time, this paper designs a double-beveled WC (D-WC) anvil. The D-WC anvil can not only improve the ultimate pressure of the cavity, but also ensure the stability of the cavity and the durability of the WC anvil. The design in this paper can also be used with the first-stage pressurization assembly to achieve better pressurization effect.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24225-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24225-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
中国式立方体压力机(CCP)因其操作简单、成本低廉而被广泛应用于高压领域。然而,CCP 腔内的极限压力较低,限制了其应用。为了提高腔体的极限压力,本文模拟了碳化钨(WC)砧的压力传递效率和 Von Mises 应力(VMS)。我们发现,碳化钨砧的预紧力效果可以通过改变钢支撑环的角度来改变。当钢制支撑环的角度为 1.2°时,碳化钨砧的预紧力最均匀,碳化钨砧的支撑效果最好。同时,本文还设计了一种双斜面 WC(D-WC)砧。D-WC砧不仅能提高型腔的极限压力,还能确保型腔的稳定性和 WC砧的耐用性。本文的设计还可与第一级加压组件配合使用,以达到更好的加压效果。
Scheme to increase the ultimate pressure of the China-type cubic press
The China-type cubic press (CCP) is widely used in the high-pressure field because of its simple operation and low cost. However, the low ultimate pressure inside the cavity of CCP has limited its application. In order to improve the ultimate pressure of the cavity, this paper simulates the pressure transfer efficiency and the Von Mises stress (VMS) of the tungsten carbide (WC) anvil. We find that the effect of the pretightening force of the WC anvil can be changed by changing the angle of the steel supporting ring. When the angle of the steel supporting ring is 1.2°, the pretightening force of the WC anvil is the most uniform, and the support effect of the WC anvil is the best. At the same time, this paper designs a double-beveled WC (D-WC) anvil. The D-WC anvil can not only improve the ultimate pressure of the cavity, but also ensure the stability of the cavity and the durability of the WC anvil. The design in this paper can also be used with the first-stage pressurization assembly to achieve better pressurization effect.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics