s 数之间的不等式

IF 0.8 Q2 MATHEMATICS
Mario Ullrich
{"title":"s 数之间的不等式","authors":"Mario Ullrich","doi":"10.1007/s43036-024-00386-x","DOIUrl":null,"url":null,"abstract":"<div><p>Singular numbers of linear operators between Hilbert spaces were generalized to Banach spaces by s-numbers (in the sense of Pietsch). This allows for different choices, including approximation, Gelfand, Kolmogorov and Bernstein numbers. Here, we present an elementary proof of a bound between the smallest and the largest s-number.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00386-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Inequalities between s-numbers\",\"authors\":\"Mario Ullrich\",\"doi\":\"10.1007/s43036-024-00386-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Singular numbers of linear operators between Hilbert spaces were generalized to Banach spaces by s-numbers (in the sense of Pietsch). This allows for different choices, including approximation, Gelfand, Kolmogorov and Bernstein numbers. Here, we present an elementary proof of a bound between the smallest and the largest s-number.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43036-024-00386-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00386-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00386-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

希尔伯特空间之间线性算子的奇异数被概括为巴拿赫空间的 s 数(在皮特施的意义上)。这样就有了不同的选择,包括近似数、格尔范数、科尔莫戈罗夫数和伯恩斯坦数。在此,我们提出了最小 s 数和最大 s 数之间界限的基本证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inequalities between s-numbers

Singular numbers of linear operators between Hilbert spaces were generalized to Banach spaces by s-numbers (in the sense of Pietsch). This allows for different choices, including approximation, Gelfand, Kolmogorov and Bernstein numbers. Here, we present an elementary proof of a bound between the smallest and the largest s-number.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信