极端条件耦合效应下飞机起落架收放机构的动态特性

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Shun Gao  (, ), Shouwen Fan  (, ), Shuai Fan  (, )
{"title":"极端条件耦合效应下飞机起落架收放机构的动态特性","authors":"Shun Gao \n (,&nbsp;),&nbsp;Shouwen Fan \n (,&nbsp;),&nbsp;Shuai Fan \n (,&nbsp;)","doi":"10.1007/s10409-024-24105-x","DOIUrl":null,"url":null,"abstract":"<div><p>The extreme conditions severely constrain the dynamic characteristics of aircraft landing gear retraction mechanism (ALGRM). This paper proposes a dynamic modeling and analysis method for ALGRM considering the coupling effects of extreme conditions such as clearance joints, flexible rods, and salt spray corrosion. Firstly, the mathematical model for clearance joint and flexible rod is established and the dynamic model of ALGRM considering clearance joints and flexible rods is formulated based on Lagrangian equation. Furthermore, the salt spray corrosion model for clearance joint is developed using COMSOL simulation software. Finally, the effects of different temperatures and relative humidities on the corrosion depth of clearance joint and the dynamic characteristics of ALGRM under the coupling effects of extreme conditions are investigated. The results have found that the impact of extreme conditions on dynamics of system cannot be ignored. This study not only provides a theoretical foundation for predicting the dynamic characteristics of ALGRM under extreme conditions but also offers insights for the optimization design and corrosion protection efforts of landing gear.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic characteristics of aircraft landing gear retraction mechanism under the coupling effects of extreme conditions\",\"authors\":\"Shun Gao \\n (,&nbsp;),&nbsp;Shouwen Fan \\n (,&nbsp;),&nbsp;Shuai Fan \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-024-24105-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The extreme conditions severely constrain the dynamic characteristics of aircraft landing gear retraction mechanism (ALGRM). This paper proposes a dynamic modeling and analysis method for ALGRM considering the coupling effects of extreme conditions such as clearance joints, flexible rods, and salt spray corrosion. Firstly, the mathematical model for clearance joint and flexible rod is established and the dynamic model of ALGRM considering clearance joints and flexible rods is formulated based on Lagrangian equation. Furthermore, the salt spray corrosion model for clearance joint is developed using COMSOL simulation software. Finally, the effects of different temperatures and relative humidities on the corrosion depth of clearance joint and the dynamic characteristics of ALGRM under the coupling effects of extreme conditions are investigated. The results have found that the impact of extreme conditions on dynamics of system cannot be ignored. This study not only provides a theoretical foundation for predicting the dynamic characteristics of ALGRM under extreme conditions but also offers insights for the optimization design and corrosion protection efforts of landing gear.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 3\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24105-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24105-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

极端条件严重制约着飞机起落架收放机构(ALGRM)的动态特性。本文提出了一种考虑间隙接头、挠性杆和盐雾腐蚀等极端条件耦合效应的 ALGRM 动态建模和分析方法。首先,建立了间隙接头和挠性杆的数学模型,并基于拉格朗日方程建立了考虑间隙接头和挠性杆的 ALGRM 动态模型。此外,还利用 COMSOL 仿真软件建立了间隙接头的盐雾腐蚀模型。最后,研究了不同温度和相对湿度对间隙接头腐蚀深度的影响,以及极端条件耦合作用下 ALGRM 的动态特性。结果发现,极端条件对系统动力学的影响不容忽视。这项研究不仅为预测 ALGRM 在极端条件下的动态特性提供了理论依据,还为起落架的优化设计和防腐工作提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic characteristics of aircraft landing gear retraction mechanism under the coupling effects of extreme conditions

The extreme conditions severely constrain the dynamic characteristics of aircraft landing gear retraction mechanism (ALGRM). This paper proposes a dynamic modeling and analysis method for ALGRM considering the coupling effects of extreme conditions such as clearance joints, flexible rods, and salt spray corrosion. Firstly, the mathematical model for clearance joint and flexible rod is established and the dynamic model of ALGRM considering clearance joints and flexible rods is formulated based on Lagrangian equation. Furthermore, the salt spray corrosion model for clearance joint is developed using COMSOL simulation software. Finally, the effects of different temperatures and relative humidities on the corrosion depth of clearance joint and the dynamic characteristics of ALGRM under the coupling effects of extreme conditions are investigated. The results have found that the impact of extreme conditions on dynamics of system cannot be ignored. This study not only provides a theoretical foundation for predicting the dynamic characteristics of ALGRM under extreme conditions but also offers insights for the optimization design and corrosion protection efforts of landing gear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信