带表面张力的二维自由边界欧拉方程的小尺度创建

IF 2.4 1区 数学 Q1 MATHEMATICS
Zhongtian Hu, Chenyun Luo, Yao Yao
{"title":"带表面张力的二维自由边界欧拉方程的小尺度创建","authors":"Zhongtian Hu,&nbsp;Chenyun Luo,&nbsp;Yao Yao","doi":"10.1007/s40818-024-00179-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the 2D free boundary incompressible Euler equations with surface tension, where the fluid domain is periodic in <span>\\(x_1\\)</span>, and has finite depth. We construct initial data with a flat free boundary and arbitrarily small velocity, such that the gradient of vorticity grows at least double-exponentially for all times during the lifespan of the associated solution. This work generalizes the celebrated result by Kiselev–Šverák [17] to the free boundary setting. The free boundary introduces some major challenges in the proof due to the deformation of the fluid domain and the fact that the velocity field cannot be reconstructed from the vorticity using the Biot-Savart law. We overcome these issues by deriving uniform-in-time control on the free boundary and obtaining pointwise estimates on an approximate Biot-Savart law.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Scale Creation for 2D Free Boundary Euler Equations with Surface Tension\",\"authors\":\"Zhongtian Hu,&nbsp;Chenyun Luo,&nbsp;Yao Yao\",\"doi\":\"10.1007/s40818-024-00179-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the 2D free boundary incompressible Euler equations with surface tension, where the fluid domain is periodic in <span>\\\\(x_1\\\\)</span>, and has finite depth. We construct initial data with a flat free boundary and arbitrarily small velocity, such that the gradient of vorticity grows at least double-exponentially for all times during the lifespan of the associated solution. This work generalizes the celebrated result by Kiselev–Šverák [17] to the free boundary setting. The free boundary introduces some major challenges in the proof due to the deformation of the fluid domain and the fact that the velocity field cannot be reconstructed from the vorticity using the Biot-Savart law. We overcome these issues by deriving uniform-in-time control on the free boundary and obtaining pointwise estimates on an approximate Biot-Savart law.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-024-00179-8\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00179-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了具有表面张力的二维自由边界不可压缩欧拉方程,其中流体域在\(x_1\)中是周期性的,并且具有有限深度。我们构建了具有平坦自由边界和任意小速度的初始数据,使得涡度梯度在相关解的生命周期内始终至少呈双指数增长。这项工作将 Kiselev-Šverák [17] 的著名结果推广到了自由边界设置。自由边界给证明带来了一些重大挑战,原因是流体域的变形,以及速度场无法使用毕奥-萨瓦特定律从涡度中重建。我们通过推导自由边界上的均匀时间控制,并获得近似 Biot-Savart 定律的点估计,克服了这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small Scale Creation for 2D Free Boundary Euler Equations with Surface Tension

In this paper, we study the 2D free boundary incompressible Euler equations with surface tension, where the fluid domain is periodic in \(x_1\), and has finite depth. We construct initial data with a flat free boundary and arbitrarily small velocity, such that the gradient of vorticity grows at least double-exponentially for all times during the lifespan of the associated solution. This work generalizes the celebrated result by Kiselev–Šverák [17] to the free boundary setting. The free boundary introduces some major challenges in the proof due to the deformation of the fluid domain and the fact that the velocity field cannot be reconstructed from the vorticity using the Biot-Savart law. We overcome these issues by deriving uniform-in-time control on the free boundary and obtaining pointwise estimates on an approximate Biot-Savart law.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信