{"title":"带表面张力的二维自由边界欧拉方程的小尺度创建","authors":"Zhongtian Hu, Chenyun Luo, Yao Yao","doi":"10.1007/s40818-024-00179-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the 2D free boundary incompressible Euler equations with surface tension, where the fluid domain is periodic in <span>\\(x_1\\)</span>, and has finite depth. We construct initial data with a flat free boundary and arbitrarily small velocity, such that the gradient of vorticity grows at least double-exponentially for all times during the lifespan of the associated solution. This work generalizes the celebrated result by Kiselev–Šverák [17] to the free boundary setting. The free boundary introduces some major challenges in the proof due to the deformation of the fluid domain and the fact that the velocity field cannot be reconstructed from the vorticity using the Biot-Savart law. We overcome these issues by deriving uniform-in-time control on the free boundary and obtaining pointwise estimates on an approximate Biot-Savart law.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Scale Creation for 2D Free Boundary Euler Equations with Surface Tension\",\"authors\":\"Zhongtian Hu, Chenyun Luo, Yao Yao\",\"doi\":\"10.1007/s40818-024-00179-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the 2D free boundary incompressible Euler equations with surface tension, where the fluid domain is periodic in <span>\\\\(x_1\\\\)</span>, and has finite depth. We construct initial data with a flat free boundary and arbitrarily small velocity, such that the gradient of vorticity grows at least double-exponentially for all times during the lifespan of the associated solution. This work generalizes the celebrated result by Kiselev–Šverák [17] to the free boundary setting. The free boundary introduces some major challenges in the proof due to the deformation of the fluid domain and the fact that the velocity field cannot be reconstructed from the vorticity using the Biot-Savart law. We overcome these issues by deriving uniform-in-time control on the free boundary and obtaining pointwise estimates on an approximate Biot-Savart law.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-024-00179-8\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00179-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Small Scale Creation for 2D Free Boundary Euler Equations with Surface Tension
In this paper, we study the 2D free boundary incompressible Euler equations with surface tension, where the fluid domain is periodic in \(x_1\), and has finite depth. We construct initial data with a flat free boundary and arbitrarily small velocity, such that the gradient of vorticity grows at least double-exponentially for all times during the lifespan of the associated solution. This work generalizes the celebrated result by Kiselev–Šverák [17] to the free boundary setting. The free boundary introduces some major challenges in the proof due to the deformation of the fluid domain and the fact that the velocity field cannot be reconstructed from the vorticity using the Biot-Savart law. We overcome these issues by deriving uniform-in-time control on the free boundary and obtaining pointwise estimates on an approximate Biot-Savart law.