轨道碎片管理中系留卫星系统的动态建模和控制策略

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Feng Gao  (, ), Jiayang Li  (, ), Fuxiang Dong  (, ), Yi Ji  (, ), Guanghui Sun  (, )
{"title":"轨道碎片管理中系留卫星系统的动态建模和控制策略","authors":"Feng Gao \n (,&nbsp;),&nbsp;Jiayang Li \n (,&nbsp;),&nbsp;Fuxiang Dong \n (,&nbsp;),&nbsp;Yi Ji \n (,&nbsp;),&nbsp;Guanghui Sun \n (,&nbsp;)","doi":"10.1007/s10409-024-24262-x","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations. This paper constructs an advanced rigid-flexible coupling dynamic model for tethered satellite systems, tailored to enhance space debris management. Utilizing the nodal position finite element method, the model significantly improves the precision of simulating tether dynamics and captures the complex interactions involving satellite and debris attitude dynamics. This advancement allows for detailed examination of potential tether entanglements and provides crucial data for optimizing deorbiting processes. To overcome the limitations of conventional control techniques, a robust adaptive sliding mode control strategy is developed. This approach is specifically designed to manage the unpredictable conditions of the low-Earth orbit and ensure precise satellite attitude control, critical for successful debris removal. Validated through extensive numerical simulations, our model and control strategy demonstrate substantial improvements in operational reliability and safety, significantly enhancing the success rate of deorbiting missions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic modeling and control strategy for tethered satellite systems in orbital debris management\",\"authors\":\"Feng Gao \\n (,&nbsp;),&nbsp;Jiayang Li \\n (,&nbsp;),&nbsp;Fuxiang Dong \\n (,&nbsp;),&nbsp;Yi Ji \\n (,&nbsp;),&nbsp;Guanghui Sun \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-024-24262-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations. This paper constructs an advanced rigid-flexible coupling dynamic model for tethered satellite systems, tailored to enhance space debris management. Utilizing the nodal position finite element method, the model significantly improves the precision of simulating tether dynamics and captures the complex interactions involving satellite and debris attitude dynamics. This advancement allows for detailed examination of potential tether entanglements and provides crucial data for optimizing deorbiting processes. To overcome the limitations of conventional control techniques, a robust adaptive sliding mode control strategy is developed. This approach is specifically designed to manage the unpredictable conditions of the low-Earth orbit and ensure precise satellite attitude control, critical for successful debris removal. Validated through extensive numerical simulations, our model and control strategy demonstrate substantial improvements in operational reliability and safety, significantly enhancing the success rate of deorbiting missions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24262-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24262-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

空间碎片的不断积累威胁着卫星的完整性和功能性,并使轨道运行复杂化。本文为系留卫星系统构建了一个先进的刚柔耦合动态模型,旨在加强空间碎片管理。利用节点位置有限元法,该模型显著提高了系留动力学模拟的精度,并捕捉到了涉及卫星和碎片姿态动力学的复杂相互作用。这一进步允许对潜在的系绳缠结进行详细检查,并为优化脱轨过程提供关键数据。为了克服传统控制技术的局限性,开发了一种稳健的自适应滑模控制策略。这种方法专门用于管理低地轨道不可预测的条件,并确保精确的卫星姿态控制,这对成功清除碎片至关重要。通过大量的数值模拟验证,我们的模型和控制策略大大提高了运行的可靠性和安全性,显著提高了脱轨任务的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic modeling and control strategy for tethered satellite systems in orbital debris management

The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations. This paper constructs an advanced rigid-flexible coupling dynamic model for tethered satellite systems, tailored to enhance space debris management. Utilizing the nodal position finite element method, the model significantly improves the precision of simulating tether dynamics and captures the complex interactions involving satellite and debris attitude dynamics. This advancement allows for detailed examination of potential tether entanglements and provides crucial data for optimizing deorbiting processes. To overcome the limitations of conventional control techniques, a robust adaptive sliding mode control strategy is developed. This approach is specifically designed to manage the unpredictable conditions of the low-Earth orbit and ensure precise satellite attitude control, critical for successful debris removal. Validated through extensive numerical simulations, our model and control strategy demonstrate substantial improvements in operational reliability and safety, significantly enhancing the success rate of deorbiting missions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信