小曲率集中的流形

IF 2.4 1区 数学 Q1 MATHEMATICS
Pak-Yeung Chan, Shaochuang Huang, Man-Chun Lee
{"title":"小曲率集中的流形","authors":"Pak-Yeung Chan,&nbsp;Shaochuang Huang,&nbsp;Man-Chun Lee","doi":"10.1007/s40818-024-00183-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we construct distance like functions with integral Hessian bound on manifolds with small curvature concentration and use it to construct Ricci flows on manifolds with possibly unbounded curvature. As an application, we study the geometric structure of those manifolds without bounded curvature assumption. In particular, we show that manifolds with Ricci lower bound, non-negative scalar curvature, bounded entropy, Ahlfors <i>n</i>-regular and small curvature concentration are topologically Euclidean.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifolds with Small Curvature Concentration\",\"authors\":\"Pak-Yeung Chan,&nbsp;Shaochuang Huang,&nbsp;Man-Chun Lee\",\"doi\":\"10.1007/s40818-024-00183-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we construct distance like functions with integral Hessian bound on manifolds with small curvature concentration and use it to construct Ricci flows on manifolds with possibly unbounded curvature. As an application, we study the geometric structure of those manifolds without bounded curvature assumption. In particular, we show that manifolds with Ricci lower bound, non-negative scalar curvature, bounded entropy, Ahlfors <i>n</i>-regular and small curvature concentration are topologically Euclidean.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-024-00183-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00183-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们在曲率集中度较小的流形上构建了具有积分赫塞斯约束的类距离函数,并利用它在曲率可能无界的流形上构建了利玛窦流。作为一种应用,我们研究了这些流形的几何结构,而不假定其曲率是有界的。特别是,我们证明了具有利玛窦下界、非负标量曲率、有界熵、阿尔福斯正则和小曲率集中的流形在拓扑上是欧几里得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manifolds with Small Curvature Concentration

In this work, we construct distance like functions with integral Hessian bound on manifolds with small curvature concentration and use it to construct Ricci flows on manifolds with possibly unbounded curvature. As an application, we study the geometric structure of those manifolds without bounded curvature assumption. In particular, we show that manifolds with Ricci lower bound, non-negative scalar curvature, bounded entropy, Ahlfors n-regular and small curvature concentration are topologically Euclidean.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信