{"title":"利用基于晶粒的模型研究热损伤结晶岩的压缩力学行为的速率和负泊松比效应","authors":"Ling Xu, Bibo Wang, Xiaolin Huang, Jiahu Du","doi":"10.1007/s10064-024-03905-5","DOIUrl":null,"url":null,"abstract":"<div><p>Rocks often have a rate effect on mechanical behaviors and exhibit a negative Poisson’s ratio (NPR) effect after being thermally damaged. However, to date, their combined role in mechanical behaviors has not been clarified. This study micromechanically explores the rate and NPR effects on the compressive behaviors of thermal-damaged rocks using the compression-hardening grain-based model (CHGBM) implemented by the Universal Discrete Element Code (UDEC). The original, moderately, and highly thermal-damaged Suizhou granite samples were subjected to unconfined compression tests for calibrating UDEC-CHGBM. With developing thermal damage from the original state, the rock sample decreases in the peak stress and modulus, exhibiting a transition of pre-peak stress-stain relation from the approximately linear to nonlinear, and a transition of Poisson’s ratio from the positive (lateral extension) to negative (lateral contraction). Our UDEC-CHGBM reproduced these experimental phenomena with reasonable accuracy. With increasing strain rates, the peak stress and modulus increase in a power law manner. The dynamic increase factors of the peak stress and modulus also increase with enhancing thermal-damaged degrees. Due to the thermal damage, the grain contact increased in the maximum allowable closure, thus enhancing compression-hardening capacity and nonlinear characteristics, resulting in a promotion of the rate effect. Lateral contraction deformation can reduce the proportion and magnitude of the tensile stress within the sample, and inhibit intergranular microcracking. The NPR effect depends on both the degree of thermal damage and strain rate. We shed light on the synergistic effects of the rate and NPR on macro- to micromechanical behaviors of thermal-damaged rocks.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate and negative Poisson’s ratio effects on Compressive Mechanical behaviors of Thermal-Damaged Crystalline Rocks using a grain-based model\",\"authors\":\"Ling Xu, Bibo Wang, Xiaolin Huang, Jiahu Du\",\"doi\":\"10.1007/s10064-024-03905-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rocks often have a rate effect on mechanical behaviors and exhibit a negative Poisson’s ratio (NPR) effect after being thermally damaged. However, to date, their combined role in mechanical behaviors has not been clarified. This study micromechanically explores the rate and NPR effects on the compressive behaviors of thermal-damaged rocks using the compression-hardening grain-based model (CHGBM) implemented by the Universal Discrete Element Code (UDEC). The original, moderately, and highly thermal-damaged Suizhou granite samples were subjected to unconfined compression tests for calibrating UDEC-CHGBM. With developing thermal damage from the original state, the rock sample decreases in the peak stress and modulus, exhibiting a transition of pre-peak stress-stain relation from the approximately linear to nonlinear, and a transition of Poisson’s ratio from the positive (lateral extension) to negative (lateral contraction). Our UDEC-CHGBM reproduced these experimental phenomena with reasonable accuracy. With increasing strain rates, the peak stress and modulus increase in a power law manner. The dynamic increase factors of the peak stress and modulus also increase with enhancing thermal-damaged degrees. Due to the thermal damage, the grain contact increased in the maximum allowable closure, thus enhancing compression-hardening capacity and nonlinear characteristics, resulting in a promotion of the rate effect. Lateral contraction deformation can reduce the proportion and magnitude of the tensile stress within the sample, and inhibit intergranular microcracking. The NPR effect depends on both the degree of thermal damage and strain rate. We shed light on the synergistic effects of the rate and NPR on macro- to micromechanical behaviors of thermal-damaged rocks.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03905-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03905-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Rate and negative Poisson’s ratio effects on Compressive Mechanical behaviors of Thermal-Damaged Crystalline Rocks using a grain-based model
Rocks often have a rate effect on mechanical behaviors and exhibit a negative Poisson’s ratio (NPR) effect after being thermally damaged. However, to date, their combined role in mechanical behaviors has not been clarified. This study micromechanically explores the rate and NPR effects on the compressive behaviors of thermal-damaged rocks using the compression-hardening grain-based model (CHGBM) implemented by the Universal Discrete Element Code (UDEC). The original, moderately, and highly thermal-damaged Suizhou granite samples were subjected to unconfined compression tests for calibrating UDEC-CHGBM. With developing thermal damage from the original state, the rock sample decreases in the peak stress and modulus, exhibiting a transition of pre-peak stress-stain relation from the approximately linear to nonlinear, and a transition of Poisson’s ratio from the positive (lateral extension) to negative (lateral contraction). Our UDEC-CHGBM reproduced these experimental phenomena with reasonable accuracy. With increasing strain rates, the peak stress and modulus increase in a power law manner. The dynamic increase factors of the peak stress and modulus also increase with enhancing thermal-damaged degrees. Due to the thermal damage, the grain contact increased in the maximum allowable closure, thus enhancing compression-hardening capacity and nonlinear characteristics, resulting in a promotion of the rate effect. Lateral contraction deformation can reduce the proportion and magnitude of the tensile stress within the sample, and inhibit intergranular microcracking. The NPR effect depends on both the degree of thermal damage and strain rate. We shed light on the synergistic effects of the rate and NPR on macro- to micromechanical behaviors of thermal-damaged rocks.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.