Moyu Liu
(, ), Jun Wang
(, ), Yu Li
(, ), Kaiyuan Cheng
(, ), Yong Huan
(, ), Ning Li
(, )
{"title":"为 3D 打印人工股骨头开发机械等效多孔结构","authors":"Moyu Liu \n (, ), Jun Wang \n (, ), Yu Li \n (, ), Kaiyuan Cheng \n (, ), Yong Huan \n (, ), Ning Li \n (, )","doi":"10.1007/s10409-024-24089-x","DOIUrl":null,"url":null,"abstract":"<div><p>The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone. To address this issue, we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads. Firstly, supported by Micro and clinical CT scans of 21 bone specimens, the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values (Hounsfield unit). After that, the equivalent porous structure of cancellous bone was designed based on the gyroid surface, the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis. Furthermore, a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone, allowing the design of personalized gradient porous structures based on clinical CT images. Finally, to verify the mechanical equivalence, implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads, the influence of the porous structure’s cell size in bone-implant interaction problems was also explored. Results showed that the minimum deviations of press-in stiffness (<15%) and peak load (<5%) both occurred when the cell size was 20% to 30% of the implant diameter. In conclusion, the designed porous structure can replicate the human cancellous bone-implant interaction at a high level, indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head.</p></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 4","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of mechanical equivalent porous structures for 3D-printed artificial femoral heads\",\"authors\":\"Moyu Liu \\n (, ), Jun Wang \\n (, ), Yu Li \\n (, ), Kaiyuan Cheng \\n (, ), Yong Huan \\n (, ), Ning Li \\n (, )\",\"doi\":\"10.1007/s10409-024-24089-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone. To address this issue, we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads. Firstly, supported by Micro and clinical CT scans of 21 bone specimens, the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values (Hounsfield unit). After that, the equivalent porous structure of cancellous bone was designed based on the gyroid surface, the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis. Furthermore, a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone, allowing the design of personalized gradient porous structures based on clinical CT images. Finally, to verify the mechanical equivalence, implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads, the influence of the porous structure’s cell size in bone-implant interaction problems was also explored. Results showed that the minimum deviations of press-in stiffness (<15%) and peak load (<5%) both occurred when the cell size was 20% to 30% of the implant diameter. In conclusion, the designed porous structure can replicate the human cancellous bone-implant interaction at a high level, indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head.</p></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 4\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24089-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24089-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Development of mechanical equivalent porous structures for 3D-printed artificial femoral heads
The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone. To address this issue, we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads. Firstly, supported by Micro and clinical CT scans of 21 bone specimens, the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values (Hounsfield unit). After that, the equivalent porous structure of cancellous bone was designed based on the gyroid surface, the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis. Furthermore, a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone, allowing the design of personalized gradient porous structures based on clinical CT images. Finally, to verify the mechanical equivalence, implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads, the influence of the porous structure’s cell size in bone-implant interaction problems was also explored. Results showed that the minimum deviations of press-in stiffness (<15%) and peak load (<5%) both occurred when the cell size was 20% to 30% of the implant diameter. In conclusion, the designed porous structure can replicate the human cancellous bone-implant interaction at a high level, indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics